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Resolution of singularities of analytic spaces

Jaros law W lodarczyk

Abstract. Building upon work of Villamayor Bierstone-Milman and our recent paper
we give a proof of the canonical Hironaka principalization and desingularization of
analytic spaces. Though the inductive scheme of the proof is the same as in algebraic
case there is a number of technical differences between analytic and algebraic situation.

1. Introduction

In the present paper we give a short proof of the Hironaka theorem on resolution of
singularities of analytic spaces. The structure of the proof and its organization is very
similar with the one given in the paper [38].

The strategy of the proof we formulate here is essentially the same as the one found by
Hironaka and simplified by Bierstone-Milman and Villamayor ([8], [9], [10]), ([35], [36],
[37]). In particular we apply here one of Villamayor’s key simplifications, eliminating the
use of the Hilbert-Samuel function and the notion of normal flatness (see [13]).

The main idea of the algorithm is to control the resolution procedure by two simple
invariants: order of the weak transform of the ideal sheaf I and the dimension of the
ambient manifold M . The process of dropping the order starts from the isolating the
”worst singularity locus” -the set where the order is maximal ordx(I) = µ. This leads to
considerations of ideal sheaves with assigned order (I, µ).

Eliminating ”worst singularity locus” supp(I, µ) builds upon reduction of the dimen-
sion of the ambient variety. It was observed by Abhyankhar and successfully implemented
by Hironaka that supp(I, µ) is contained in a certain smooth hypersurface M ′ of M . The
concept of hypersurface of maximal contact can be expressed nicely by using Giraud
approach with derivations.

The blow-ups used for eliminating supp(I, µ) are performed only at centers which are
contained in supp(I, µ). This has two major consequences:

1. The outside of the locus supp(I, µ) can be ignored in the process. Thus (I, µ) can
be considered as a ”part of the ideal sheaf of I where the order is ≥ µ”. Solving of (I, µ)
is merely eliminating supp(I, µ).
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2. The total transform of ideal is divisible by µ-power of exceptional divisor. Thus the
transformation of the ideal I can be described by explicit formula:

σc(I, µ) = I(E)−µσ∗(I).

This makes a basis for the reduction to the hypersuface of maximal contact. Although
it is not possible to restrict I directly to M ′ ⊂M we can find an ideal sheaf (I ′, µ′), called
”coefficient ideal ”, which lives on M ′, and which is related to (I, µ) by the equality

supp(I, µ) = supp(I ′, µ′).

Now the problem of eliminating ”bad locus” supp(I, µ) is reduced to the lower dimension
where we proceed by induction.

This approach has a major flaw. The procedure of restricting I to the hypersurface
of maximal contact is not canonical and is defined locally. In fact for two different
hypersurfaces of maximal contact we get two different objects which are loosely related.
In order to resolve this issue Hironaka used the following approach: The local resolutions
can be encoded by a certain invariant. Each single operation used in the above mentioned
induction leaves its ”trace” which is a single entry of the invariant. As a result the
invariant is a sequence of the numbers occuring in local resolutions. The invariant is
upper semicontinuous and defines a stratification of the ambient space. This invariant
drops after the blow-up of the maximal stratum. It determines the centers of the resolution
and allows one to patch up local desingularizations to a global one. What adds to the
complexity is that the invariant is defined within some rich inductive scheme encoding the
desingularization and assuring its canonicity (Bierstone-Milman’s towers of local blow-ups
with admissible centers and Villamayor’s general basic objects) (see also Encinas-Hauser
[17]).

Instead of considering the invariant as the key notion of the algorithm, in [38] we
proposed a different approach. It is based upon two simple observations.

(1) The resolution process defined as a sequence of suitable blow-ups of ambient
spaces can be applied simultaneously not only to the given singularities but rather
to a class of equivalent singularities obtained by simple arithmetical modifications.
This means that we can “tune” singularities before resolving them.

(2) In the equivalence class we can choose a convenient representative given by the
homogenized ideals introduced in the paper. The restrictions of homogenized
ideals to different hypersurfaces of maximal contact define locally analytically
isomorphic singularities. Moreover the local isomorphism of hypersurfaces of max-
imal contact is defined by a local analytic automorphism of the ambient space
preserving all the relevant resolutions.

”Homogenization” of the ideal makes the operation of restriction to hypersurface of max-
imal contact canonical- independent of any choices. In particular there is no necessity
of describing and comparing local algorithms. The inductive structure of the process is
reduced to the existence of a canonical functorial resolution in lower dimensions. This
approach puts much less emphasis on the invariant. In fact as was observed by Kollár by
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mere allowing reducible algebraic varieties (or analytic spaces) in the inductive scheme
one eliminates the ”long” invariant completely ([31]). What is left is a ”bare” two- step
induction.

In Step 2 of the proof, given an ideal (I, µ) we assign to it the worst singularity
order µ′. Instead of dealing with (I, µ) directly we form an auxiliary ideal (companion
ideal) which is roughly (I, µ′). Its resolution determines the drop of the maximal order of
the weak transform (nonmonomial part) of I. By repeating this process sufficiently many
times the weak transform of (I, µ) disappear and (I, µ) becomes principal monomial thus,
easy to solve directly. The procedure in Step 2 uses the fact that companion ideals and,
in general, all ideals (I, µ′), where µ′ = max{ordx(I) | x ∈ M} are possible to solve
by reduction to the hypersurface of maximal contact. This is done in Step 1 of the
proof. That’s where the operation of tuning comes handy. The ”tuning” of ideals has
two aspects. First, homogenization gives us the canonicity of resolution and solves the
glueing problem. Second, we can view a coefficient ideal as a part of the tuning too. In
this approach coefficient ideal C(I, µ) lives on M and is equivalent to I but its ”restricts
well” not only to the hypersurface of maximal contact but to any smooth subvariety
Z ⊂M , that is,

supp(C(I), µ) ∩ Z = supp(C(I)|Z , µ
′)

In the analytic situation, considered in the paper, in the algorithm of resolution of (I, µ)
the compactness condition is essential. In particular isolating ”the worst singularity” locus
is possible only under the assumption of compactness. Even if we start our considerations
from ideal sheaves on compact manifolds the operation of local restriction to hypersurface
of maximal contact leads to noncompact submanifolds. That is why in the analytic case it
is natural to consider not manilfolds or compact manifolds but rather germs of manifolds
at compact subsets. After establishing a few technical differences between analytic and
algebraic case we can carry the inductive algorithm essentially in the same way as in the
algebraic case. As a result we construct a resolution which is locally but not globally a
sequence of blow-ups at smooth centers.

The presented proof is elementary, constructive and self-contained.
The paper is organized as follows. In section 1 we formulate three main theorems: the

theorem of canonical principalization (Hironaka’s “Desingularization II”), the theorem of
canonical embedded resolution (a slightly weaker version of Hironaka’s “Desingularization
I”) and the theorem of canonical resolution. In section 2 we introduce basic notions we are
going to use throughout the paper. In section 3 we formulate the theorem of canonical
resolution of marked ideals and show how it implies three main theorems (Hironaka’s
resolution principle). Section 4 gives important technical ingredients. In particular we
introduce here the notion of homogenized ideals. In section 5 we formulate the resolution
algorithm and prove the theorem of canonical resolution of marked ideals. In section 6
we make final conclusions from the proof.
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2. Formulation of the main theorems

All analytic spaces in this paper are defined over a ground field K = C or R. We give
a proof of the following Hironaka Theorems (see [26]):

Canonical resolution of singularities

Theorem 2.0.1. Let Y be an analytic space. There exists a canonical desingularization

of Y that is a manifold Ỹ together with a proper bimeromorphic morphism resY : Ỹ → Y
such that

(1) resY : Ỹ → Y is an isomorphism over the nonsingular part Yns of Y .
(2) The inverse image of the singular locus res−1

Y (Ysing) is a simple normal crossing
divisor.

(3) resY is functorial with respect to local analytic isomorphisms. For any local

analytic isomorphism φ : Y ′ → Y there is a natural lifting φ̃ : Ỹ ′ → Ỹ which
is a local analytic isomorphism.

Locally finite embedded desingularization

Theorem 2.0.2. Let Y be an analytic subspace of an analytic manifold M . There exists a

manifold M̃ , a simple normal crossing locally finite divisor E on M̃ , and a bimeromorphic
proper morphism

resY,M : M̃ →M

such that the strict transform Ỹ ⊂ M̃ is smooth and have simple normal crossings with
the divisor E. The support of the divisor E is the the exceptional locus of resY,M . The
morphism resY,M locally factors into a sequence of blow-ups at smooth centers. That is,

for any compact set Z ⊂ Y there is an open subset U ⊂M and Ũ = res−1
Y,M (U) ⊂ M̃ and

a sequence

U0 = U
σU1←− U1

σU2←− U2 ←− . . .←− Ui ←− . . .←− Ur = Ũ (∗)

of blow-ups σUi : Ui−1 ←− Ui with smooth closed centers Ci−1 ⊂ Ui−1 such that

(1) The exceptional divisor EUi of the induced morphism σi
U = σU1◦. . .◦σUi : Ui → U

has only simple normal crossings and Ci has simple normal crossings with Ei.
(2) Let YUi := Y ∩ Ui be the strict transform of Y . All centers Ci are disjoint from

the set Reg(Y ) ⊂ Yi of points where Y (not Yi) is smooth (and are not necessarily
contained in Yi).
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(3) The strict transform YUr = Ỹ ∩Ur of YU := Y ∩U is smooth and has only simple
normal crossings with the exceptional divisor Er.

(4) The morphism resY,M : (M,Y )← (M̃, Ỹ ) defined by the embedded desingulariza-
tion commutes with local analytic isomorphisms, embeddings of ambient varieties.

(5) For any compact sets Z1 ⊂ Z2 and corresponding open neighborhoods U1 ⊂ U2

the restriction of the factorization (*) of res
Y,M |fU2

: Ũ2 → U2 to Ũ1 determines

the factorization of res
Y,M |fU1

: Ũ1 → U1.

(6) (Strengthening of Bravo-Villamayor [13])

σ∗(IY ) = IeY I eE ,
where IeY is the sheaf of ideals of the subvariety Ỹ ⊂ M̃ and I eE is the sheaf of

ideals of a simple normal crossing divisor Ẽ which is a locally finite combination
of the irreducible components of the divisor EUr.

Locally finite principalization of sheaves of ideals

Theorem 2.0.3. Let I be a sheaf of ideals on a analytic manifold M (not necessarily

compact). There exists a locally finite principalization of I, that is, a manifold M̃ , a

proper morphism prinI : M̃ →M , and a sheaf of ideals Ĩ on M such that

(1) For any compact set Z ⊂ M , there is an open neighborhoods U ⊃ Z and

Ũ := prin−1
I (U) ⊂ M̃ for which the restriction prinI|eU : Ũ → U splits into a

finite sequence of blow-ups

U = U0
σU1←− U1

σU2←− U2 ←− . . .←− Ui ←− . . .←− Ur = Ũ (∗)

of blow-ups σUi : Ui−1 ← Ui with smooth centers Ci−1 ⊂ Ui−1 such that
(2) The exceptional divisor EUi of the induced morphism σi = σ1 ◦ . . . ◦ σi : Ui → U

has only simple normal crossings and Ci has simple normal crossings with Ei.
(3) The total transform prin∗

I|eU (I) = σr∗(I) is the ideal of a simple normal crossing

divisor ẼU which is a locally finite combination of the irreducible components of
the divisor EUr.

(4) For any compact sets Z1 ⊂ Z2 and corresponding open neighborhoods U1 ⊂ U2

the restriction of the factorization (*) of prinI|fU2
: Ũ2 → U2 to Ũ1 determines the

factorization of prinI|fU1
: Ũ1 → U1.

The morphism prin : (M̃, Ĩ) → (M, I) commutes with local analytic isomorphisms, em-
beddings of ambient varieties.

Remarks. (1) By the exceptional divisor of the blow-up σ : M ′ →M with a smooth
center C we mean the inverse image E := σ−1(C) of the center C. By the excep-
tional divisor of the composite of blow-ups σi with smooth centers Ci−1 we mean
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the union of the strict transforms of the exceptional divisors of σi. This defini-
tion coincides with the standard definition of the exceptional set of points of the
bimeromorphic morphism in the case when codim(Ci) ≥ 2 (as in Theorem 2.0.2).
If codim(Ci−1) = 1 the blow-up of Ci−1 is an identical isomorphism and defines
a formal operation of converting a subvariety Ci−1 ⊂ Mi−1 into a component of
the exceptional divisor Ei on Mi. This formalism is convenient for the proofs.
In particular it indicates that Ci−1 identified via σi with a component of Ei has
simple normal crossings with other components of Ei.

(2) In the Theorem 2.0.2 we blow up centers of codimension ≥ 2 and both definitions
coincide.

(3) Given a closed embedding of manifolds i : M →֒M ′, the coherent sheaf of ideals
I on M defines a coherent subsheaf i∗(I) ⊂ i∗(OM ) of OM ′ -module i∗(OM ). Let
i♯ : OM ′ → i∗(OM ) be the natural surjection of OM ′ -modules. The inverse image
I ′ = (i♯)−1(i∗(I)) defines a coherent sheaf of ideals on M ′. By abuse of notation
I ′ will be denoted as i∗(I) ·OM ′ .

3. Preliminaries

3.1. Germs of analytic spaces at compact subsets

Definition 3.1.1. Let M be an analytic space and Z ⊂ M be a compact subset. By a
representative of germ MZ of M at Z we mean a pair (U,Z) where U ⊂ M is any open
subset of M containing Z. We say that for any two open subsets U,U ′ of M containing
Z the representative of germs (U,Z), and (U ′, Z) define the same germ MZ . We write
MZ = (U,Z) and call U a neighborhood of a germ MZ . By a morphism f : MZ →M ′

Z′ we
mean a morphism fU : U → U ′ between some neighborhoods of MZ and M ′

Z′ such that
f(Z) ⊂ Z ′. The morphism f is proper, projective, (resp. is an open or closed inclusion)
if fU has this property for the corresponding neighborhoods U,U ′.

We introduce the operation of union and intersection of germs : If U,U ′ ⊂M then

(U,Z) ∪ (U ′, Z ′) := (U ∪ U ′, Z ∪ Z ′), (U,Z) ∩ (U ′, Z ′) := (U ∩ U ′, Z ∩ Z ′)

Then (U,Z)→ (U,Z) ∪ (U ′, Z ′) and (U,Z) ∩ (U ′, Z ′)→ (U,Z) are open inclusions.

3.2. Resolution of marked ideals

We shall consider ideal sheaves and divisors on germs MZ . If U ⊂M is a smooth open
subset containing Z then we call the germ MZ = (U,Z) smooth. A sheaf of ideal on MZ

is a sheaf I on some neighborhood U of MZ . For any sheaf of ideals I on a smooth germ
MZ = (U,Z) and any point x ∈ U we denote by

ordx(I) := max{i | Ix ⊂ m
i
x}

the order of I at x. (Here mx denotes the maximal ideal of x.)

Definition 3.2.1. (Hironaka [26], [28], Bierstone-Milman [8], Villamayor [35]) A marked
ideal is a collection (MZ , I, E, µ), where MZ is a smooth germ, I is a sheaf of ideals
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on MZ , µ is a nonnegative integer and E is a totally ordered collection of divisors on
MZ whose irreducible components are pairwise disjoint and all have multiplicity one.
Moreover the irreducible components of divisors in E have simultaneously simple normal
crossings.

Let (MZ , I, E, µ) be a marked ideal such that the ideal sheaf I is defined on an open
neighborhood U of MZ . One can show that the set

suppZ(MZ , I, E, µ) := {x ∈ Z | ordx(I) ≥ µ}

is compact. On the other hand the set

suppU (MZ , I, E, µ) := {x ∈ U | ordx(I) ≥ µ}

defines a closed analytic subspace of U . (see Lemma 5.2.2).

Definition 3.2.2. (Hironaka [26], [28], Bierstone-Milman [8], Villamayor [35]) By the
support (originally singular locus) of (MZ , I, E, µ) we mean the germ of analytic space

supp(MZ , I, E, µ) := (suppU (MZ , I, E, µ), suppZ(MZ , I, E, µ)),

Remarks. (1) The ideals with assigned orders or functions with assigned multiplic-
ities and their supports are key objects in the proofs of Hironaka, Villamayor
and Bierstone-Milman. In particular Hironaka introduced the notion of idealistic
exponent.

(2) To simplify notation we often write marked ideals (MZ , I, E, µ) as couples (I, µ)
or even ideals I.

(3) For any sheaf of ideals I on MZ = (U,Z) we have

supp(I, 1) = V (I) := {x ∈ U | f(x) = 0, for any f ∈ I}.

Definition 3.2.3. Let MZ be a germ of an analytic manifold M. Let C ⊂ U be a smooth
closed subspace of a neighborhood U ⊂ Z. Let σU : U ′ → U denote the blow-up of a
smooth center C. Set Z ′ := σ−1

U (Z), M ′
Z′ := (U ′, Z ′). The germ of σU is a bimeromorphic

morphism σ : M ′
Z′ →MZ which is called a blow-up of MZ at the center C ⊂MZ .

Definition 3.2.4. (Hironaka [26], [28], Bierstone-Milman [8], Villamayor [35]) By a
resolution of (MZ , I, E, µ) we mean a sequence of blow-ups σi : Mi,Zi

→ Mi−1,Zi−1

of disjoint unions of smooth centers Ci−1 ⊂Mi−1,

M0,Z0

σ1←−M1,Z1

σ2←−M2,Z2

σ3←− . . .Mi,Zi
←− . . .

σr←−Mr,Zr
,

which defines a sequence of marked ideals (Mi,Zi
, Ii, Ei, µ) where

(1) Ci ⊂ supp(Mi,Zi
, Ii, Ei, µ).

(2) Ci has simple normal crossings with Ei.
(3) Ii = I(Di)

−µσ∗
i (Ii−1), where I(Di) is the ideal of the exceptional divisor Di of

σi.
(4) Ei = σc

i (Ei−1) ∪ {Di}, where σc
i (Ei−1) is the set of strict transforms of divisors

in Ei−1.

37



W LODARCZYK

(5) The order on σc
i (Ei−1) is defined by the order on Ei−1 while Di is the maximal

element of Ei.
(6) supp(Mr,Zr

, Ir, Er, µ) = ∅.

Remark. Note that the resolution of (MZ , I, E, µ) coincides with the resolution of
(MZ′ , I, E, µ), where Z ′ := Z ∩ supp(I, µ) so we can assume that

Z ⊂ supp(I, µ).

Definition 3.2.5. The sequence of morphisms which are either isomorphisms or blow-ups
satisfying conditions (1)-(5) is called a multiple test blow-up. The number of morphisms
in a multiple test blow-up will be called its length.

Definition 3.2.6. An extension of a sequence of blow-ups (MiZi
)0≤i≤m is a sequence

(M ′
jZj

)0≤j≤m′ of blow-ups and isomorphisms M ′
0Z0

= M ′
j0Zj0

= . . . = M ′
j1−1,Zj1−1

←

M ′
j1

= . . . = M ′
j2−1,Zj2−1

← . . .M ′
jm,Zjm

= . . . = M ′
m′ , where M ′

jiZji
= MiZi

.

In particular we shall consider extensions of multiple test blow-ups.

Remarks. (1) The definition of extension arises naturally when we pass to open sub-
sets of the considered ambient manifold M .

(2) The notion of a multiple test blow-up is analogous to the notions of test or
admissible blow-ups considered by Hironaka, Bierstone-Milman and Villamayor.

3.3. Transforms of marked ideals and controlled transforms of functions

In the setting of the above definition we shall call

(Ii, µ) := σc
i (Ii−1, µ)

a transform of the marked ideal or controlled transform of (I, µ). It makes sense for a
single blow-up in a multiple test blow-up as well as for a multiple test blow-up. Let
σi := σ1 ◦ . . . ◦ σi : Mi → M be a composition of consecutive morphisms of a multiple
test blow-up. Then in the above setting

(Ii, µ) = (σi)c(I, µ).

We shall also denote the controlled transform (σi)c(I, µ) by (I, µ)i or [I, µ]i.
The controlled transform can also be defined for local sections f ∈ I(U). Let

σ : M ← M ′ be a blow-up with a smooth center C ⊂ supp(I, µ) defining a transfor-
mation of marked ideals σc(I, µ) = (I ′, µ). Let f ∈ I(U) be a section of a sheaf of ideals.
Let U ′ ⊆ σ−1(U) be an open subset for which the sheaf of ideals of the exceptional divisor
is generated by a function y. The function

g = y−µ(f ◦ σ) ∈ I(U ′)

is a controlled transform of f on U ′ (defined up to an invertible function). As before we
extend it to any multiple test blow-up.

The following lemma shows that the notion of controlled transform is well defined.
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Lemma 3.3.1. Let C ⊂ supp(I, µ) be a smooth center of the blow-up σ : M ← M ′ and
let D denote the exceptional divisor. Let IC denote the sheaf of ideals defined by C. Then

(1) I ⊂ Iµ
C .

(2) σ∗(I) ⊂ (ID)µ.

Proof. (1) We can assume that the ambient manifold M is isomorphic to an open ball
in Ån. Let u1, . . . , uk be coordinates generating IC . Suppose f ∈ I \ Iµ

C . Then we can
write f =

∑
α cαu

α, where either |α| ≥ µ or |α| < µ and cα 6∈ IC . By assumption there is
α with |α| < µ such that cα 6∈ IC . Take α with the smallest |α|. There is a point x ∈ C
for which cα(x) 6= 0 and in the Taylor expansion of f at x there is a term cα(x)uα. Thus
ordx(I) < µ. This contradicts the assumption C ⊂ supp(I, µ).

(2) σ∗(I) ⊂ σ∗(IC)µ = (ID)µ. �

3.4. Functorial properties of multiple test blow-ups

We can define the fiber products for the germs of analytic spaces

(X,ZX)×(Y,ZY ) (X,ZX) := (X ×Y X,ZX ×ZY
ZX).

Proposition 3.4.1. Let MiZi
be a multiple test blow-up of a marked ideal (MZ , I, E, µ)

defining a sequence of marked ideals (MiZi
, Ii, Ei, µ). Given a local analytic isomophism

φ : M ′
Z′ → MZ , the induced sequence M ′

iZi
:= M ′ ×MZ

Mi,Zi
is a multiple test blow-up

of (M ′
Z′ , I ′, E′, µ) such that

(1) φ lifts to local analytic isomorphisms φiZi
: M ′

iZi
→MiZi

.
(2) (M ′

iZ′
i
) defines a sequence of marked ideals (M ′

Z′
i
, I ′i, E

′
i, µ) where I ′i = φ∗i (Ii), the

divisors in E′
i are the inverse images of the divisors in Ei and the order on E′

i is
defined by the order on Ei.

(3) If (MiZi
) is a resolution of (MZ , I, E, µ) then (M ′

iZ′
i
) is an extension of a reso-

lution of (M ′
Z′ , I ′, E′, µ).

Proof Follows from definition. �

Definition 3.4.2. We say that the above multiple test blow-up (M ′
iZ′

i
) is induced via φi

by MiZi
. We shall denote (M ′

iZ′
i
) and the corresponding marked ideals (M ′

iZ′
i
, I ′, E′, µ)

by
φ∗(MiZi

) := M ′
iZ′

i
, φ∗(MiZi

, Ii, Ei, µ) := (M ′
iZ′

i
, I ′i, E

′
i, µ).

The above proposition and definition generalize to any sequence of blow-ups with
smooth centers.

Proposition 3.4.3. Let MiZi
be a sequence blow-ups with smooth centers having simple

normal crossings with exceptional divisors.

(1) Given a surjective local analytic isomophism φ : M ′
Z′ →MZ , the induced sequence

M ′
i,Z′

i
:= M ′

Z′ ×MZ
MiZi

is a sequence of blow-ups with smooth centers having

simple normal crossings with exceptional divisors. �
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(2) Given a local analytic isomophism φ : M ′
Z′ → MZ , the induced sequence

M ′
i,Z′

i
:= M ′

Z′ ×MZ
MiZi

is an extension of a sequence of blow-ups with smooth

centers having simple normal crossings with exceptional divisors.

3.5. Canonical resolution of marked ideals

Theorem 3.5.1. With any marked ideal (MZ , I, E, µ) there is associated a resolution
(MiZi

) called canonical such that

(1) For any surjective local analytic isomorphism φ : M ′
Z′ →MZ the induced resolu-

tion φ∗(MiZi
) is the canonical resolution of φ∗(MZ , I, E, µ).

(2) For any local analytic isomorphism φ : M ′
Z′ →MZ the induced resolution φ∗(MiZi

)
is an extension of the canonical resolution of φ∗(MZ , I, E, µ).

(3) If E = ∅ then (Mi) commutes with closed embeddings of the ambient mani-
folds MZ →֒ M ′

Z′ , that is, the canonical resolution (MiZi
) of (MZ , I, ∅, µ) with

centers Ci defines the canonical resolution (M ′
iZ′

i
) of (M ′

Z′ , I ′, ∅, µ), where

I ′ = i∗(I) · OM ′ , with the centers i(Ci).

3.6. Canonical principalization of germs of ideals

Theorem 3.6.1. Let I be a sheaf of ideals on a germ MZ of an analytic manifold M .

There exists a principalization of I, that is, a projective morphism prin(I) : M̃eZ → MZ

a finite sequence

MZ = M0,Z0

σ1←−M1Z1

σ2←−M2,Z2
←− . . .←−Mi,Zi

←− . . .←−Mr,Zr
= M̃eZ

of blow-ups with smooth centers Ci−1 ⊂Mi−1,Zi−1
such that

(1) The exceptional divisor Ei of the induced morphism σi = σ1 ◦ . . . ◦ σi : Ui → U
has only simple normal crossings and Ci has simple normal crossings with Ei.

(2) The total transform prin∗
|eU (I) = σr∗(I) is the ideal of a simple normal crossing

divisor Ẽ which is a natural combination of the irreducible components of the
divisor Er.

The morphism prin : (M̃, Ĩ) → (M, I) commutes with local analytic isomorphisms, em-
beddings of ambient manifolds.

3.7. Canonical embedded desingularization of germs of analytic spaces

Theorem 3.7.1. Let MZ be a germ of an analytic manifold and YZ be a germ of analytic
subspace of a germ MZ . There exists an embedded desingularization of YZ ⊂MZ that is,
a finite sequence

MZ = M0,Z0

σ1←−M1Z1

σ2←−M2,Z2
←− . . .←−Mi,Zi

←− . . .←−Mr,Zr
= M̃eZ

of blow-ups with smooth centers Ci−1 ⊂Mi−1,Zi−1
such that

(1) The exceptional divisor Ei of the induced morphism σi = σ1 ◦ . . . ◦ σi : Ui → U
has only simple normal crossings and Ci has simple normal crossings with Ei.
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(2) The strict transform ỸeZ := Yr,Zr
of YZ is smooth and has only simple normal

crossings with the exceptional divisor Er.

(3) The morphism (MZ , YZ) ← (M̃eZ , ỸeZ) defined by the embedded desingularization
commutes with local analytic isomorphisms, embeddings of ambient manifolds.

3.8. Canonical desingularization of germs of analytic spaces

Theorem 3.8.1. Let Y be an analytic space and Z ⊂ Y be a compact subset. There

exists a canonical desingularization of YZ that is a germ of a manifold ỸeZ together with

a proper bimeromorphic morphism resYZ
: ỸeZ → YZ such that

(1) Z̃ = res−1
YZ

(Z).

(2) resYZ
: ỸeZ → YZ is an isomorphism over the nonsingular part Yns of Y .

(3) The inverse image of the singular locus res−1
YZ

(YZsing) is a simple normal crossing
divisor.

(4) resYZ
is functorial with respect to local analytic isomorphisms. For any local

analytic isomorphism φ : Y ′
Z′ → YZ there is a natural lifting φ̃ : Ỹ ′ eZ′ → ỸeZ which

is a local analytic isomorphism.

4. Hironaka resolution principle

Our proof is based upon the following principle which can be traced back to Hironaka
and was used by Villamayor in his simplification of Hironaka’s algorithm:

Proposition 4.0.2. The following implications hold true:

Canonical resolution of germs of marked ideals (MZ , I, E, µ) (1)

⇓

Canonical principalization of germs of sheaves I on manifolds M (2)

⇓

Canonical embedded desingularization of germs YZ ⊂MZ (3)

⇓

Canonical desingularization of germs of analytic spaces (4)

Proof (1)⇒(2) Canonical principalization

Let σ : MZ ← M̃Z denote the morphism defined by the canonical resolution

MZ = M0,Z0
← M1,Z1

← M2,Z2
← . . . ← Mk,Zk

= M̃Z of (MZ , I, ∅, 1). The con-

trolled transform (Ĩ, 1) = (Ik, 1) = σc(I, 1) has empty support. Consequently, V (Ĩ) =

V (Ik) = ∅, which implies ĨeZ = Ik = OfM eZ . By definition for i = 1, . . . , k, we have

(Ii, 1) = σc
i (Ii−1) = I(Di)

−1σ∗(Ii−1), and thus

σ∗
i (Ii−1) = Ii · I(Di).
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Note that if I(D) = O(−D) is the sheaf of ideals of a simple normal crossing divisor D
on a smooth MZ and σ : M ′

Z′ → MZ is the blow-up with a smooth center C which has
only simple normal crossings with D then σ∗(I(D)) = I(σ∗(D)) is the sheaf of ideals of
the divisor with simple normal crossings. The components of the induced Cartier divisors
σ∗(D) are either the strict transforms of the components of D or the components of the
exceptional divisors. (The local equation ya1

1 · . . . ·y
ak

l of D is transformed by the blow-up

(y1, . . . , yn)→ (y1, y1y2, y1y3, . . . , y1yl, yl+1, . . . , yn) into the equation ya1+...al

1 ya2

2 . . . yan
n .)

This implies by induction on i that

σ∗
i σ

∗
i−1 . . . σ

∗
2σ

∗
1(I0) = Ii · I(Ei)

where Ei is an exceptional divisor with simple normal crossings constructed inductively
as

I(Ei) = σ∗(I(Ei−1))I(Di).

Finally the full transform σ∗
k(I) = Ik · I(Ek) = OfM · I(Ek) = I(Ek) is principal and

generated by the sheaf of ideals of a divisor whose components are the exceptional divisors.
The canonicity conditions for principalization follow from the canonicity of resolution of
marked ideals.

(2)⇒(3) Canonical embedded desingularization of germs of analytic spaces

Lemma 4.0.3. The canonical principalization of I on MZ defines an isomorphism over
MZ \ V (I).

Proof. Let p = 0 ∈ An denote the origin of the affine space An. The canonical prin-
cipalization of the germ (An

{p},OAn) is an isomorphism over generic points in a neigh-

borhood of p and is equivariant with respect to Gl(n) action , thus it is an isomorphism.

The restriction of the canonical principalization (M̃eZ , Ĩ) of (MZ , I) to an open subset

UZU
⊂MZ determines the canonical principalization of (UZU

, I|UZU
). Let M̃eZ →MZ be

the canonical principalization of (MZ ,OMZ
) and x ∈ Z \ V (I). Locally we find an open

subset U{x} ⊂ MZ \ V (I) isomorphic to (An
{p},OAn). The canonical principalization of

(U{x}, IU ) = ((U{x},OU ) ≃ (An
{p},OAn) is an isomorphism. �

Let YZ ⊂ MZ be a germ of a closed analytic subspace Y ⊂ M . Let MZ = M0,Z0
←

M1,Z1
←M2,Z2

← . . .←Mk,Zk
= M̃Z be the canonical principalization of germs sheaves

of ideals IY . It defines a sequence of blow-ups U0 ← Uk which is a principalization of IU0

for a suitable open neighborhood U0 of Z.
Suppose all centers Ci−1 of the blow-ups σi : Ui−1 ← Ui are disjoint from the generic

points of strict transforms Yi−1 of Y0 = Y ∩U0. Then σ̃ is an isomorphism over the generic
points y of Y0 and σ̃∗(I)y = σ∗(I)y. Moreover no exceptional divisor pass through y.
This contradicts the condition σ̃∗(I) = I eE . Thus there is a smallest ires with the property
that Cires contains the strict transform Yires and all centers Cj for j < ires are disjoint
from the generic points of strict transforms Yj . Let y ∈ Yires be a generic point for
which Uires → U0 is an isomorphism. Find an open set U ⊂ U0 intersecting Y such that
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Uires → U0 is an isomorphism over U . Then Yires ∩ U = Y ∩ U and Cires ∩ U ⊇ Yires ∩ U
by the definition of Yires . On the other hand, by the previous lemma Cires ∩U ⊆ Yires ∩U ,
which gives Cires ∩ U = Yires ∩ U . Finally, Yires is an irreducible component of a smooth
(possibly reducible) center Ci. This implies that Yires is smooth and has simple normal
crossings with the exceptional divisors. We define the canonical embedded resolution of
(MZ , YZ) to be

(MZ , YZ) = (U0Z , Y0Z)← (U1Z1
, Y1Z1

)← (U2Z2
, Y2Z2

)← . . .← (Uires,Zires
, YiresZires

).

It is independent of the choice of U . If (M ′
Z′ , Y ′

Z) → (MZ , YZ) is a local analytic iso-
mophism then the induced sequence of blow-ups (U ′

iZi
)0≤i≤k = (U ′

Z′ ,×MZ
UiZi

)0≤i≤k is
an extension of the canonical principalization (U ′

j,Z′
j
)0≤j≤k′ of (U ′

0Z′
0

, IY ′|U ′
0
). Moreover

U ′
jres

= U ′
ires

and (U ′
i)0≤i≤ires is is an extension of the canonical resolution (U ′

j)0≤j≤jres

of (M ′
Z′ , Y ′

Z). Commutativity with closed embeddings for embedded desingularizations
follows from the commutativity with closed embeddings for principalizations.

(3)⇒(4) Canonical desingularization of germs

Let Y be an analytic space. Every point of y ∈ Y has a neighborhood V which is
locally isomorphic to a closed analytic subset of an open ball U ⊂ Cn. The coordinates
u1, . . . un on Y define a minimal embedding Y ⊃ V → U into an open subset U of Cn.
Let Z ⊂ V = Y ∩ U be a compact set. Then YZ can be identified with VZ . Consider the

canonical embedded desingularization (ŨZ , ỸZ)→ (UZ , YZ). Then we define the canonical

desingularization of YZ to be ỸZ → YZ . Two minimal embeddings φ1 : Z ⊂ V1 → U1 ⊃
Z1 = φ1(Z) and φ2 : Z ⊂ V2 → U2 ⊃ Z2 = φ2(Z) of two different open subsets V1, V2

containing Z are defined by two different sets of coordinates u1, . . . un and u′1, . . . u
′
n differ

by an isomorphism

ψ := φ−1
2 φ1 : (U1Z1

, (φ1(V1)Z1
)→ (U2Z2

, (φ2(V2)Z2
)

mapping coordinates x1, . . . , xn to x′1, . . . , x
′
n. Note that both φ1(V1)Z1

and φ2(V1)Z2

can be identified with ỸeZ . The isomorphism ψ, by canonicity, lifts to the isomorphisms

between embedded desingularizations ψ̃ : (Ũ1eZ1
, Ỹ1eZ) → (Ũ2Z , Ỹ2Z) and nonembedded

desingularizations Ỹ1Z → Ỹ2Z . The latter shows that ỸZ → YZ is independent of the
choice of ambient manifold U . Observe that if YZ ⊂ Y ′

Z′ is an open embedding then it
extends to an open embedding UZ ⊂ U ′

Z′ and it defines an open embeddings of desingu-

larizations ỸZ ⊂ Ỹ ′
Z′ .

Let YZ denote the analytic germ of Y at Z. Consider an open cover of Z with the
open subsets Vi ⊂ Wi ⊂ Ui of Y , such that Vi ⊂ Wi and Vi ⊂ Ui are compact and Ui is
isomorphic to an open balls as above. Set Si := Vi, Zi := Wi ∩ Z.

The desingularization of YSi
= UiSi

determines the desingularization Ũ ′
i of an open

neighborhood U ′
i of YSi

and thus the desingularization Ṽi → Vi of Vi ⊂ U
′
i .
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For each i, j, the embedding YZi∩Zj
→ YZi

lifts to embeddings of nonembedded desin-

gularizations of germs ỸZi∩Zj
→ ỸZi

. Note that the open embedding Vi ∩ Vj → Vi is the

restriction of YZi∩Zj
→ YZi

. It defines an embedding of desingularizations (Vi∩Vj)
˜→ Ṽi.

Let Ṽ be a manifold obtained by gluing Vi along Vi ∩ Vj . The desingularization mor-

phism desV : Ṽ → V is bimeromorphic and proper. Let Z̃ := des−1
V (Z). Note that

YZ =
⋃
YZi

=
⋃

(Vi)Zi
. We define the canonical desingularization of YZ to be

ỸZ := ṼeZ =
⋃
ṼiZi

.

It follows from the definition that it commutes with local analytic isomorphisms. �

4.1. Canonical principalization of ideal sheaves on analytic spaces

Let I be an ideal sheaf on a manifold M . Consider an open cover {Ui}i∈I of M , such

that Zi := Ui are compact. For every i let prini : (ỸZi
, ĨZi

) → (YZi
, IZi

) be a canonical

principalization of I on YZi
. Let Ũi := prin−1

i (Ui) → (Ui, I|Ui
) be its restriction. By

canonicity, prini : prin−1
i (YZi

∩ YZj
) is isomorphic over YZi

∩ YZj
to ỸZi∩Zj

. Thus the
meromorphic map

Ũij := prin−1
i (Ui ∩ Uj) ≃ Ũji := prin−1

j (Ui ∩ Uj)

is an isomorphism. We define M̃ to be a manifold obtained by gluing Ũi along Ũij . Then

prin : M̃ →M is a proper bimeromorphic morphism. Moreover for any compact Z ⊂M ,

(M̃eZ , ĨeZ)→ (MZ , IZ) is a canonical principalization of I on the germ MZ .

4.2. Canonical embedded desingularization of analytic spaces

Let Y ⊂M be an analytic subspace of a manifold. Consider an open cover {Ui}i∈I of

M , such that Zi := Ui are compact. For every i let desi : (M̃Zi
, ỸZi

) → (MZi
, YZi

) be

the canonical desingularization of YZi
. Let (Ũi, Ũ

Y
i ) := des−1

i (Ui, Y ∩ Ui)→ (Ui, Y ∩ Ui)

be its restriction. As before we define M̃ to be a manifold obtained by gluing Ũi along

Ũij . A subspace Ỹ ⊂ M̃ is a manifold obtained by gluing ŨY
i along ŨY

ij . Then

des : (M̃, Ỹ )→ (M,Y ) is a proper bimeromorphic morphism. Moreover for any compact

Z ⊂ M , (M̃eZ ỸeZ) → (MZ , YZ) is a canonical embedded desingularization of the germ
YZ ⊂MZ .

4.3. Canonical desingularization of analytic spaces

Let Y be an analytic space. Consider an open cover {Ui}i∈I of Y , such that Zi := Ui

are compact. For every i let desi : ỸZi
→ YZi

be the canonical desingularization of the

germ YZi
. Let Ũi := des−1

i (Ui) → Ui be its restriction. As before we define Ỹ to be a

manifold obtained by gluing Ũi along Ũij . Then des : Ỹ → Y is a proper bimeromorphic

morphism. Moreover for any compact Z ⊂ Y , ỸeZ → YZ is a canonical desingularization
of germ YZ .
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5. Marked ideals

5.1. Equivalence relation for marked ideals

Let us introduce the following equivalence relation for marked ideals:

Definition 5.1.1. Let (MZ , I, EI , µI) and (MZ ,J , EJ , µJ ) be two marked ideals on
the manifold MZ . Then (MZ , I, EI , µI) ≃ (MZ ,J , EJ , µJ ) if

(1) EI = EJ and the orders on EI and on EJ coincide.
(2) supp(MZ , I, EI , µI) = supp(MZ ,J , EJ , µJ ).

(3) All the multiple test blow-ups MZ0 = MZ
σ1←− M1Z1

σ2←− . . . ←− MiZi

σr←−
. . . ←− MrZr

of (MZ , I, EI , µI) are exactly the multiple test blow-ups of
(MZ ,J , EJ , µJ ) and moreover we have

supp(MiZi
, Ii, Ei, µI) = supp(MiZi

,Ji, Ei, µJ ).

It is easy to show the lemma:

Lemma 5.1.2. For any k ∈ N, (I, µ) ≃ (Ik, kµ).

Remark. The marked ideals considered in this paper satisfy a stronger equivalence
condition: For any local analytic isomorphisms φ : M ′

Z → MZ , φ∗(I, µ) ≃ φ∗(J , µ).
This condition will follow and is not added in the definition.

5.2. Ideals of derivatives

Ideals of derivatives were first introduced and studied in the resolution context by
Giraud. Villamayor developed and applied this language to his basic objects.

Definition 5.2.1. (Giraud, Villamayor) Let I be a coherent sheaf of ideals on a germ
of manifold MZ . By the first derivative (originally extension) DMZ

(I) of I (or simply
D(I)) we mean the coherent sheaf of ideals generated by all functions f ∈ I with their
first derivatives. Then the i-th derivative Di(I) is defined to be D(Di−1(I)). If (I, µ) is
a marked ideal and i ≤ µ then we define

Di(I, µ) := (Di(I), µ− i).

Recall that on a manifold M there is a locally free sheaf of differentials ΩM/K gener-
ated locally by du1, . . . , dun for a set of local coordinates u1, . . . , un. The dual sheaf of
derivations DerK(OM ) is locally generated by the derivations ∂

∂ui
. Immediately from the

definition we observe that D(I) is a coherent sheaf defined locally by generators fj of I

and all their partial derivatives
∂fj

∂ui
. We see by induction that Di(I) is a coherent sheaf

defined locally by the generators fj of I and their derivatives
∂|α|fj

∂uα for all multiindices
α = (α1, . . . , αn), where |α| := α1 + . . .+ αn ≤ i.

Lemma 5.2.2. (Giraud, Villamayor) For any i ≤ µ− 1,

supp(I, µ) = supp(Di(I), µ− i)).
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In particular supp(I, µ) = supp(Dµ−1(I), 1) = V (Dµ−1(I)) is a closed set (i = µ− 1).

Proof. It suffices to prove the lemma for i = 1. If x ∈ supp(I, µ) then for any f ∈ I we
have ordx(f) ≥ µ. This implies ordx(Df) ≥ µ− 1 for any derivative D and consequently
x ∈ supp(D(I), µ − 1)). Now, let x ∈ supp(D(I), µ − 1)). Then for any f ∈ I we have
ordx(f) ≥ µ− 1. Suppose ordx(f) = µ− 1 for some f ∈ I. Then f =

∑
|α|≥µ−1 cαx

α and

there is α such that α = µ− 1 and cα 6= 0. We find ∂
∂xi

for which ordx(∂xα

∂xi
) = µ− 2 and

thus ordx( ∂f
∂xi

) = µ− 2 and x 6∈ supp(D(I), µ− 1)). �

We write (I, µ) ⊂ (J , µ) if I ⊂ J .

Lemma 5.2.3. (Giraud, Villamayor) Let (I, µ) be a marked ideal and C ⊂ supp(I, µ)
be a smooth center and r ≤ µ. Let σ : MZ ←M ′

Z be a blow-up at C. Then

σc(Dr
MZ

(I, µ)) ⊆ Dr
MZ

′(σc(I, µ)).

Proof. First assume that r = 1. Let u1, . . . , un denote the local coordinates at x ∈ C
such that C is a coordinate subspace. Then the local coordinates at x′ ∈ σ−1(x) are of
the form u′i = ui

um
for i < m and u′i = ui for i ≥ m, where um = u′m = y denotes the local

equation of the exceptional divisor.
The derivations ∂

∂ui
of Ox,M extend to derivations of the rational field K(Ox,M ). Note

also that

∂u′
j

∂ui
=

δij

um
, i < m, 1 ≤ j ≤ n;

∂u′
j

∂um
= − 1

u2
m
uj , j < m;

∂u′
m

∂um
= 1;

∂u′
j

∂um
= 0, j > m;

∂u′
i

∂uj
= δij , i ≥ m.

This gives

∂
∂ui

= 1
um

∂
∂u′

i
= 1

y
∂

∂u′
i
, 1 ≤ i < m; ∂

∂u′
i

= ∂
∂ui

, m < i ≤ n,

∂
∂um

= − 1
y (u′1

∂
∂u′

1

+ . . .+ u′m−1
∂

∂u′
m−1

− u′m
∂

∂u′
m

).

We see that any derivation D of Ox,M induces a derivation yσ∗(D) of Ox′,M ′ . Let E be
the exceptional divisor I(E) be its ideal sheaf (locally generated by y). Thus the sheaf
of derivations I(E)σ∗(DerK(OM )) is a subsheaf of DerK(OM ′) locally generated by

∂

∂u′i
, i < m; y

∂

∂y
, and y

∂

∂u′i
, i > m.

In particular I(E)σ∗(DM (I)) ⊂ DM ′(σ∗(I)). For any sheaf of ideals J on M ′ denote by
I(E)σ∗(DM )(J ) ⊂ DM ′(J ) the ideal generated by J and the derivatives D′(f), where
f ∈ J and D′ ∈ I(E)σ∗(DerK(OM )). Note that for a neighborhood U ′ ∋ x′ and any
f ∈ J (U ′) and D′ ∈ yσ∗(DerK(OM )), y divides D′(y) and

D′(yf) = yD′(f) +D′(y)f ∈ yσ∗(DM )(J ) + yJ = yσ∗(DM )(J ).
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Consequently, yσ∗(DM )(yJ ) ⊆ yyσ∗(DM )(J ) and more generally yσ∗(DM )(yµJ ) ⊆
yµyσ∗(DM ′)(J ). Then
yσ∗(DM (I)) ⊆ yσ∗(DM )(σ∗(I)) = yσ∗(DM )(yµσc(I))

⊆ yµyσ∗(DM )(σc(I)) ⊆ yµDM ′(σc(I)).
Then

σc(DM (I)) = y−µ+1σ∗(DM (I)) ⊆ DM ′(σc(I)).

Assume now that r is arbitrary. Then C ⊂ supp(I, µ) = supp(Di
M (I, µ)) for i ≤ r and

by induction on r,

σc(Dr
MI) = σc(DM (Dr−1

M (I))) ⊆ DM ′(σcDr−1
M (I)) ⊆ Dr

M ′(σc(I)).

�

As a corollary from Lemma 5.2.3 we prove the following

Lemma 5.2.4. A multiple test blow-up (Mi)0≤i≤k of (I, µ) is a multiple test blow-up of
Dj(I, µ) for 0 ≤ j ≤ µ and

[Dj(I, µ)]k ⊂ D
j(Ik, µ).

Proof. Induction on k. For k = 0 evident. Let σk+1 : Mk ← Mk+1 denote the
blow-up with a center Ck ⊆ supp(Ik, µ) = supp(Dj(Ik, µ)) ⊆ supp([Dj(I, µ)]k). Then
by induction [Dj(I, µ)]k+1 = σc

k+1[D
j(I, µ)]k ⊆ σc

k+1(D
j(Ik, µ)). Lemma 5.2.3 gives

σc
k+1(D

j(Ik, µ)) ⊆ Djσc
k+1(Ik, µ) = Dj(Ik+1, µ). �

5.3. Hypersurfaces of maximal contact

The concept of the hypersurfaces of maximal contact is one of the key points of this
proof. It was originated by Hironaka, Abhyankhar and Giraud and developed in the
papers of Bierstone-Milman and Villamayor.

In our terminology we are looking for a smooth hypersurface containing the supports
of marked ideals and whose strict transforms under multiple test blow-ups contain the
supports of the induced marked ideals. Existence of such hypersurfaces allows a reduction
of the resolution problem to codimension 1.

First we introduce marked ideals which locally admit hypersurfaces of maximal contact.

Definition 5.3.1. (Villamayor [35]) We say that (MZ , I, E, µ) be a marked ideal of
maximal order (originally simple basic object) if there exists an open neighborhood U
of MZ = (U,Z) such that I is defined on U ⊃ Z and max{ordx(I) | x ∈ U} ≤ µ or
equivalently Dµ(I) = OMZ

.

Lemma 5.3.2. (Villamayor [35]) Let (I, µ) be a marked ideal of maximal order and
C ⊂ supp(I, µ) be a smooth center. Let σ : MZ ← M ′

Z′ be a blow-up at C ⊂ supp(I, µ).
Then σc(I, µ) is of maximal order.

Proof. If (I, µ) is a marked ideal of maximal order then Dµ(I) = OMZ
. Then by Lemma

5.2.3, Dµ(σc(I, µ)) ⊃ σc(Dµ(I), 0) = OMZ
. �

Lemma 5.3.3. (Villamayor [35]) If (I, µ) is a marked ideal of maximal order and
0 ≤ i ≤ µ then Di(I, µ) is of maximal order.
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Proof. Dµ−i(Di(I, µ)) = Dµ(I, µ) = OMZ
. �

In particular (Dµ−1(I), 1) is a marked ideal of maximal order.

Lemma 5.3.4. (Giraud) Let (I, µ) be a marked ideal of maximal order and let
σ : MZ ← M ′

Z′ be a blow-up at a smooth center C ⊂ supp(I, µ). Let u ∈ Dµ−1(I, µ)(U)
be a function of multiplicity one on U , that is, for any x ∈ V (u), ordx(u) = 1. In particu-
lar supp(I, µ)∩U ⊂ V (u). Let U ′ ⊂ σ−1(U) ⊂M ′

Z′ be an open set where the exceptional
divisor is described by y. Let u′ := σc(u) = y−1σ∗(u) be the controlled transform of u.
Then

(1) u′ ∈ Dµ−1(σc(I|U ′ , µ)).
(2) u′ is a function of multiplicity one on U ′.
(3) V (u′) is the restriction of the strict transform of V (u) to U ′.

Proof. (1) u′ = σc(u) = u/y ∈ σc(Dµ−1(I)) ⊂ Dµ−1(σc(I)).
(2) Since u was one of the local coordinates describing the center of blow-ups, u′ = u/y

is a parameter, that is, a function of order one.
(3) follows from (2). �

Definition 5.3.5. We shall call a function

u ∈ T (I)(U) := Dµ−1(I(U))

of multiplicity one a tangent direction of (I, µ) on U .

As a corollary from the above we obtain the following lemma:

Lemma 5.3.6. (Giraud) Let u ∈ T (I)(U) be a tangent direction of (I, µ) on U . Then
for any multiple test blow-up (Ui) of (I|U , µ) all the supports of the induced marked ideals
supp(Ii, µ) are contained in the strict transforms V (u)i of V (u). �

Remarks. (1) Tangent directions are functions defining locally hypersurfaces of max-
imal contact.

(2) The main problem leading to complexity of the proofs is that of noncanonical
choice of the tangent directions. We overcome this difficulty by introducing
homogenized ideals.

Lemma 5.3.7. (Villamayor) Let (I, µ) be a marked ideal of maximal order whose support
is of codimension 1. Then all codimension one components of supp(I, µ) are smooth and
isolated. After the blow-up σ : MZ ← M ′

Z′ at such a component C ⊂ supp(I, µ) the
induced support supp(I ′, µ) does not intersect the exceptional divisor of σ.

Proof. By the previous lemma there is a tangent direction u ∈ Dµ−1(I) whose zero set
is smooth and contains supp(I, µ). Then Dµ−1(I) = (u) and I is locally described as
I = (uµ). Suppose there is g ∈ I written as g = cµ(x, u)uµ + cµ−1(x)u

µ−1 + . . .+ c0(x),
where at least one function ci(x) 6= 0 for 0 ≤ i ≤ µ−1. Then there is a multiindex α such

|α| = µ− i− 1 and ∂|α|ci

∂xα is not the zero function. Then the derivative ∂µ−1g
∂ui∂xα ∈ Dµ−1(I)

does not belong to the ideal (u).
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The blow-up at the component C locally defined by u transforms (I, µ) = ((uµ), µ) to
(I ′, µ), where σ∗(I) = yµOM , and I ′ = σc(I) = y−µσ∗(I) = OM , where y = u describes
the exceptional divisor. �

Remark. Note that the blow-up of codimension one components is an isomorphism. How-
ever it defines a nontrivial transformation of marked ideals. In the actual desingularization
process this kind of blow-up may occur for some marked ideals induced on subvarieties of
ambient varieties. Though they define isomorphisms of those subvarieties they determine
blow-ups of ambient varieties which are not isomorphisms.

5.4. Arithmetical operations on marked ideals

In this section all marked ideals are defined for the germ of the manifold M and
the same set of exceptional divisors E. Define the following operations of addition and
multiplication of marked ideals:

(1) (I, µI) + (J , µJ ) := (I lcm(µI ,µJ )/µI + J lcm(µI ,µJ )/µJ , lcm(µI , µJ ))
or more generally (the operation of addition is not associative)

(I1, µ1) + . . .+ (Im, µm) := (I
lcm(µ1,...,µm)/µ1

1 + I
lcm(µ1,...,µm)/µ2

2

+ . . .+I
lcm(µ1,...,µm)/µm
m , lcm(µ1, . . . , µm)).

(2) (I, µI) · (J , µJ ) := (I · J, µI + µJ ).

Lemma 5.4.1. (1) supp((I1, µ1)+. . .+(Im, µm)) = supp(I1, µ1)∩. . .∩supp(Im, µm).
Moreover multiple test blow-ups (Mk) of (I1, µ1)+ . . .+(Im, µm) are exactly those
which are simultaneous multiple test blow-ups for all (Ij , µj) and for any k we
have the equality for the controlled transforms (Ij , µI)k

(I1, µ1)k + . . .+ (Im, µm)k = [(I1, µ1) + . . .+ (Im, µm)]k

(2)
supp(I, µI) ∩ supp(J , µJ ) ⊆ supp((I, µI) · (J , µJ )).

Moreover any simultaneous multiple test blow-up Mi of both ideals (I, µI) and
(J , µJ ) is a multiple test blow-up for (I, µI) · (J , µJ ), and for the controlled
transforms (Ik, µI) and (Jk, µJ ) we have the equality

(Ik, µI) · (Jk, µJ ) = [(I, µI) · (J , µJ )]k.

Proof.

(1) Follows from two simple observations:
(i) (I, µ) ≃ (Ik, kµ)
(ii) supp(I, µ) ∩ supp(I ′, µ) = supp(I + I ′, µ) and the property is persistent for

controlled transforms.

(2) Follows from the following fact:
If ordx(I) ≥ µI and ordx(J ) ≥ µJ then ordx(I · J ) ≥ µI + µJ . This implies that

supp(I, µI) ∩ supp(J , µJ ) ⊆ supp((I, µI) · (J , µJ )). Then by induction we have the
equality:

(Ik, µI) · (Jk, µJ ) = [(I, µI) · (J , µJ )]k.
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�

5.5. Homogenized ideals and tangent directions

Let (I, µ) be a marked ideal of maximal order. Set T (I) := Dµ−1I. By the homoge-
nized ideal we mean

H(I, µ) := (H(I), µ) = (I +DI · T (I) + . . .+DiI · T (I)i + . . .+Dµ−1I · T (I)µ−1, µ).

Lemma 5.5.1. Let (I, µ) be a marked ideal of maximal order.

(1) If µ = 1, then (H(I), 1) = (I, 1).
(2) H(I) = I+DI ·T (I)+. . .+DiI ·T (I)i+. . .+Dµ−1I ·T (I)µ−1+DµI ·T (I)µ+. . ..
(3) (H(I), µ) = (I, µ) +D(I, µ) · (T (I), 1) + . . .+Di(I, µ) · (T (I), 1)i

+ . . .+Dµ−1(I, µ) · (T (I), 1)µ−1.
(4) If µ > 1 then D(H(I, µ)) ⊆ H(D(I, µ)).
(5) T (H(I, µ)) = T (I, µ).

Proof. (1) T (I) = I and Di(I)T (I)i ⊆ I. (2) Dµ−1(I)T (I) = T (I)µ and Di(I)T (I)i ⊂
T (I)µ for i ≥ µ. (3) By definition. (4) Note that T (D(I)) = T (I) and D(Di(I)T i(I)i) ⊆
Di(D(I))T (D(I)) + Di−1(DI)T (D(I))i−1 ⊆ H(D(I, µ)). (5) T (I) = Dµ−1(I) ⊆
Dµ−1(H(I)) ⊆ H(Dµ−1(I)) = H(T (I)) = T (I). �

Remark. A homogenized ideal features two important properties:

(1) It is equivalent to the given ideal.
(2) It “looks the same” from all possible tangent directions.

By the first property we can use the homogenized ideal to construct resolution via the
Giraud Lemma 5.3.6. By the second property such a construction does not depend on
the choice of tangent directions.

Lemma 5.5.2. Let (I, µ) be a marked ideal of maximal order. Then

(1) (I, µ) ≃ (H(I), µ).
(2) For any multiple test blow-up (Mk) of (I, µ),

(H(I), µ)k = (I, µ)k +[D(I, µ)]k · [(T (I), 1)]k + . . .+[Dµ−1(I, µ)]k · [(T (I), 1)]µ−1
k .

Proof. Since H(I) ⊃ I, every multiple test blow-up of H(I, µ) is a multiple test blow-up
of (I, µ). By Lemma 5.2.4, every multiple test blow-up of (I, µ) is a multiple test blow-
up for all Di(I, µ) and consequently, by Lemma 5.4.1 it is a simultaneous multiple test
blow-up of all (Di(I) · T (I)i, µ) = (Di(I), µ− i) · (T (I)i, i) and

supp(H(I, µ)k) =
⋂µ−1

i=0 supp(Di(I) · T (I)i, µ)k

=
⋂µ−1

i=0 supp(Di(I), µ− i)k · (T (I)i, i)k

⊇
⋂µ−1

i=0 supp(Di(I, µ))k = supp(Ik, µ).
Therefore every multiple test blow-up of (I, µ) is a multiple test blow-up of H(I, µ)

and by Lemmas 5.5.1(3) and 5.4.1 we get (2). �

Although the following Lemma 5.5.3 are used in this paper only in the case E = ∅ we
formulate them in slightly more general versions.
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Lemma 5.5.3. ( Glueing Lemma ) Let (MZ , I, E, µ) be a marked ideal of maximal or-
der. Assume there exist tangent directions u, v ∈ T (I, µ)x = Dµ−1(I, µ) at x ∈ supp(I, µ)
which are transversal to E. Then there exists an open neighborhood V of x such that V
is compact and an automorphism φuv of MS where S := Z ∩ V such that

(1) φ∗uv(HI)|MS
= HI|MS

.
(2) φ∗uv(E) = E.
(3) φ∗uv(u) = v.
(4) supp(I, µ) := V (T (I, µ)) is contained in the fixed point set of φ.
(5) Any test resolution MiSi

of (MS , I, E, µ) is equivariant with respect to φuv and
moreover the properties (1)-(4) are satisfied for the lifting φuvi : MiSi

→MiSi
of

φuv : MS →MS and the induced marked ideal HI)i.

Proof. (0) Construction of the automorphism φuv.

Find coordinates u2, . . . , un transversal to u and v such that u = u1, u2, . . . , un and
v, u2, . . . , un form two sets of coordinates at x and divisors in E are described by some
coordinates ui where i ≥ 2. Set

φuv(u1) = v, φuv(ui) = ui for i > 1.

The morphism φuv : U → U ′ defines an open embedding from some neighborhood U
of x to another neighborhood U ′ of x.

(1) Let h := v − u ∈ T (I). For any f ∈ I,

φ∗uv(f) = f(u1 +h, u2, . . . , un) = f(u1, . . . , un)+
∂f

∂u1
·h+

1

2!

∂2f

∂u2
1

·h2 + . . .+
1

i!

∂if

∂ui
1

·hi + . . .

The latter element belongs to

I +DI · T (I) + . . .+DiI · T (I)i
+ . . .+Dµ−1I · T (I)µ−1

= HI.

Hence φ∗uv(I) ⊂ HI. Analogously φ∗uv(DiI) ⊂ DiI + Di+1I · T (I) + . . . + Dµ−1I ·

T (I)µ−i−1
= HDiI. In particular by Lemma 5.5.1, φ∗uv(T (I), 1) ⊂ H(T (I), 1) = (T (I), 1).

This gives

φ∗uv(DiI · T (I)i
) ⊂ DiI · T (I)i

+ . . .+Dµ−1I · T (I)µ−1 ⊂ HI.

By the above φ∗uv(HI)x ⊂ (HI)x and since the scheme is noetherian, φ∗uv(HI)x = (HI)x.
Consequently φ∗uv(HI)y = (HI)y for all points y in some neighborhood V ⊂ U of x. We

can assume that V ⊂ U is compact.

(2)(3) Follow from the construction.
(4) The fixed point set of φuv is defined by ui = φ∗uv(ui), i = 1, . . . , n, that is, h = 0.

But h ∈ Dµ−1(I) is 0 on supp(I, µ). In particular φuv defines an automorphism of MS

identical on S = V ∩M .
(5) Let C0 ⊂ supp(I, µ) be the center of σ0. Then we can find coordinates u′1, u

′
2, . . . , u

′
n

transversal to u = u′1 and v = u+ h such that C0 is described by coordinates u′1 = u′2 =
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. . . = u′m = 0 for some m ≥ 0 or equivalently v = u′2 = . . . = u′m = 0 . By (4), the
automorphism φuv is described by

φuv(u′i) = u′i + h′i, where h′i ∈ (h) ∈ T (I) ⊂ Dµ−1I.

By (3), C is invariant with respect to φuv and it lifts to an automorphism φuv1 ofM1. Note
also that at any point p ∈ σ−1

0 (x)∩ supp(I1, µ) there is a set of coordinates u′′1 , u
′′
2 , . . . , u

′′
n

where u′′i =
u′

i

u′
m

, u′′i = u′i for i > m. Then the form of φuv1 is the same as φuv.

φuv1(u
′′
i ) = u′′1 + h′′i , where h′′ ∈ T (I)1 ⊂ D

µ−1I1

The fixed point set of φuv is defined by h′′ = 0 in a neighborhood Up of p and it contains
supp(I1, µ)∩Up. In particular all points p ∈ supp(I1, µ)∩ (σ1)

−1(x) are fixed under φuv1.

Thus φuv1 defines an automorphism of M1,S1
= σ−1

1 (MS). We continue the reasoning by
induction. �

5.6. Coefficient ideals and Giraud Lemma

The idea of coefficient ideals was originated by Hironaka and then developed in papers
of Villamayor and Bierstone-Milman. The following definition modifies and generalizes
the definition of Villamayor.

Definition 5.6.1. Let (I, µ) be a marked ideal of maximal order. By the coefficient ideal
we mean

C(I, µ) = (I, µ) + (DI, µ− 1) + . . .+ (Dµ−1I, 1).

Remark. The coefficient ideals C(I) feature two important properties.

(1) C(I) is equivalent to I.
(2) The intersection of the support of (I, µ) with any submanifold S is the support

of the restriction of C(I) to S:

supp(I) ∩ S = supp(C(I)|S).

Moreover this condition is persistent under relevant multiple test blow-ups.

These properties allow one to control and modify the part of support of (I, µ) contained
in S by applying multiple test blow-ups of C(I)|S .

Lemma 5.6.2. C(I, µ) ≃ (I, µ).

Proof. By Lemma 5.4.1 multiple test blow-ups of C(I, µ) are simultaneous multiple test
blow-ups of Di(I, µ) for 0 ≤ i ≤ µ− 1. By Lemma 5.2.4 multiple test blow-ups of (I, µ)
define a multiple test blow-up of all Di(I, µ). Thus multiple test blow-ups of (I, µ) and
C(I, µ) are the same and supp(C(I, µ))k =

⋂
supp(DiI, µ− i)k = supp(Ik, µ). �

Lemma 5.6.3. Let (MZ , I, E, µ) be a marked ideal of maximal order whose support
supp(I, µ) does not contain a submanifold S of MZ . Assume that S has only simple
normal crossings with E. Then

supp(I, µ) ∩ S ⊆ supp((I, µ)|S).
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Proof. The order of an ideal does not drop but may rise after restriction to a submanifold.
�

Proposition 5.6.4. Let (MZ , I, E, µ) be a marked ideal of maximal order whose support
supp(I, µ) does not contain the germ of a submanifold ST of MZ . Assume that S has
only simple normal crossings with E and T := Z ∩ S. Let E′ ⊂ E be the set of divisors
transversal to S. Set E′

|S := {D ∩ S | D ∈ E′}, µc := lcm(1, 2, . . . , µ), and consider the

marked ideal C(I, µ)|S = (S, C(I, µ)|S , E
′
|S , µc). Then

supp(I, µ) ∩ S = supp(C(I, µ)|S).

Moreover let (MiZi
) be a multiple test blow-up with centers Ci contained in the strict

transforms Si ⊂Mi of S. Then

(1) The restrictions σi|Si
: SiTi

→ Si−1Ti−1
of the morphisms σi : MiZi

→ Mi−1Zi−1

define a multiple test blow-up (SiTi
) of C(I, µ)|ST

(where Ti := Zi ∩ Si.)
(2) supp(Ii, µ) ∩ Si = supp[C(I, µ)|S ]i.
(3) Every multiple test blow-up (SiTi

) of C(I, µ)|S defines a multiple test blow-up
(MiZi

) of (I, µ) with centers Ci contained in the strict transforms SiTi
⊂ MiZi

of ST ⊂MT .

Proof. By Lemmas 5.6.2 and 5.6.3, supp(I, µ)∩S = supp(C(I, µ))∩S ⊆ supp(C(I, µ)|S).
Let x1, . . . , xk, y1, . . . , yn−k be local coordinates at p such that {x1 = 0, . . . , xk = 0}

describes S. Then write a function f ∈ I can be written as

f =
∑

cαf (y)xα.

Now x ∈ supp(I, µ) ∩ S iff ordx(cα,f ) ≥ µ− |α| for all f ∈ I and 0 ≤ |α| < µ. Note that

cαf |S =

(
1

α!

∂|α|(f)

∂xα

)

|S

∈ D|α|(I)|S

and hence supp(I, µ) ∩ S =
⋂

f∈I,|α|≤µ supp(cαf |S , µ − |α|) ⊇
⋂

0≤i<µ supp((DiI)|S) =

supp(C(I, µ)|S).
Assume that all multiple test blow-ups of (I, µ) of length k with centers Ci ⊂ Si are

defined by multiple test blow-ups of C(I, µ)|S and moreover for i ≤ k,

supp(Ii, µ) ∩ Si = supp[C(I, µ)|S ]i.

For any f ∈ I define f = f0 ∈ I and fi+1 = σc
i (fi) = y−µ

i σ∗(fi) ∈ Ii+1. Assume that

fk =
∑

cαfk(y)xα,

where cαfk|Sk
∈ (σk

|Sk
)c(Dµ−|α|(I)|S). Consider the effect of the blow-up of Ck at a point

pk+1 in the strict transform Sk+1 ⊂Mk+1. By Lemmas 5.6.2 and 5.6.3,
supp(Ik+1, µ) ∩ Sk+1 = supp[C(I, µ)]k+1 ∩ Sk+1

⊆ supp[C(I, µ)]k+1|Sk+1
= supp[C(I, µ)|S ]k+1

Let x1, . . . , xk describe the submanifold Sk of Mk. We can find coordinates x1, . . . , xk,
y1, . . . , yn−k at the point pk, by taking if necessary linear combinations of y1, . . . , yn−k,
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such that the center of the blow-up is described by x1, . . . , xk, y1, . . . , ym and the coordi-
nates at pk+1 are given by

x′1 = x1/ym, . . . , x
′
k = xk/ym, y

′
1 = y1/ym, . . . , y

′
m = ym, y

′
m+1 = ym+1, . . . , y

′
n = yn.

Note that replacing y1, . . . , yn−k with their linear combinations does not modify the form
fk =

∑
cαfk(y)xα. Then the function fk+1 = σc(fk) can be written as

fk+1 =
∑

cαf,k+1(y)x
′α,

where cαfk+1 = y
−µ+|α|
m σ∗

k+1(cαfk). Thus

cαfk+1|Sk+1
= (σk+1|Sk+1

)c(cαfk|Sk
) ∈ (σk+1

|Sk+1
)c(Dµ−|α|(I)|S) = (σk+1)c(Dµ−|α|(I))|Sk+1

and consequently
supp(Ik+1, µ) ∩ Sk+1 =

⋂
f∈I,|α|≤µ supp(cαfk+1|Sk+1

, µ− |α|)

⊇ supp[C(I, µ)|S ]k+1 = supp(C(I, µ)k+1)|Sk+1
.

�

As a simple consequence of Lemma 5.6.4 we formulate the following refinement of the
Giraud Lemma.

Lemma 5.6.5. Let (MZ , I, ∅, µ) be a marked ideal of maximal order whose support
supp(I, µ) has codimension at least 2 at some point x. Let U ∋ x be an open subset
for which there is a tangent direction u ∈ T (I) and such that supp(I, µ) ∩ U is of codi-
mension at least 2. Let V (u) be the regular subscheme of U defined by u. Then for any
multiple test blow-up (MiZi

) of MZ ,

(1) supp(Ii, µ) is contained in the strict transform V (u)iTi
of V (u)T as a proper

subset (where T = Z ∩ V (u) and Ti = Zi ∩ V (u)i).
(2) The sequence (V (u)iTi

) is a multiple test blow-up of C(I, µ)|V (u)T
.

(3) supp(Ii, µ) ∩ V (u)iTi
= supp[C(I, µ)|V (u)T

]i.
(4) Every multiple test blow-up (V (u)iTi

) of C(I, µ)|V (u)T
defines a multiple

test blow-up (MiZi
) of (I, µ).

�

6. Algorithm for canonical resolution of marked ideals

The presentation of the following resolution algorithm builds upon Villamayor’s and
Bierstone-Milman’s proofs.

Theorem 6.0.6. For any marked ideal (MZ , I, E, µ) such that I 6= 0 there is an associ-
ated resolution (MiZi

))0≤i≤mM
, called canonical, satisfying the following conditions:

(1) For any surjective local analytic isomophism φ : M ′
Z′ →MZ the induced sequence

(M ′
iZ′

i
) = φ∗(MiZi

) is the canonical resolution of M ′.

(2) For any local analytic isomophism φ : M ′ → M the induced sequence
(M ′

iZi
) = φ∗(MiZi

) is an extension of the canonical resolution of M ′
Z′ .

Remarks. (1) In Step 2 we resolve general marked ideals by reducing the algorithm
to resolving some marked ideals of maximal order (companion ideals).
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(2) In Step 1 we resolve marked ideals of maximal order. It is the heart part of the
algorthm.

(3) The main idea of the algorithm of resolving marked ideals of maximal order in
Step 1 is to reduce the procedure to the hypersurface of maximal contact (Step
1b).

(4) By Lemma 5.3.4 hypersurfaces of maximal contact can be constructed locally.
They are in general not transversal to E and can not be used for the reduction
procedure. We think of E and its strict transforms as an obstacle to existence of
a hypersurface of maximal contact (transversal to E). These divisors are often
referred to as “old” ones.

(5) In Step 1a we move “old” divisors apart from the support of the marked ideal. In
this process we create “new” divisors but these divisors are “born” from centers
lying in the hypersurface of maximal contact. The “new” divisors are transver-
sal to hypersurfaces of maximal contact. After eliminating “old” divisors from
the support in Step 1a all divisors are “new” and we may reduce the resolving
procedure to hypersurfaces of maximal contact (Step 1b).

Proof. Induction on the dimension of MZ . If M is 0-dimensional, I 6= 0 and µ > 0 then
supp(M, I, µ) = ∅ and all resolutions are trivial.

Step 1. Resolving a marked ideal (MZ ,J , E, µ) of maximal order.

Before we start our resolution algorithm for the marked ideal (J , µ) of maximal order
we shall replace it with the equivalent homogenized ideal C(H(J , µ)). Resolving the ideal
C(H(J , µ)) defines a resolution of (J , µ) at this step. To simplify notation we shall denote
C(H(J , µ)) by (J , µ).

Step 1a. Reduction to the nonboundary case. For any multiple test blow-up
(MiZi

) of (MZ ,J , E, µ) we shall identify (for simplicity) strict transforms of E on MiZi

with E. For any x ∈ Zi, let s(x) denote the number of divisors in E through x and set

si = max{s(x) | x ∈ supp(J i) ∩ Zi}.

Let s = s0. By assumption the intersections of any s > s0 components of the excep-
tional divisors are disjoint from supp(J , µ). Each intersection of divisors in E on MZ

is locally defined by intersection of some irreducible components of these divisors. Find
all intersections Hs

α ⊂ MZ , α ∈ A, of s irreducible components of divisors E such that
supp(J , µ) ∩ Hs

α ∩ Z 6= ∅. By the maximality of s, the supports supp(J |Hs
α
) ⊂ Hs

α are
disjoint from Hs

α′ (in a neighborhood of Z), where α′ 6= α.

Step 1aa. Eliminating the components Hs
α contained in supp(J , µ).

Let Hs
α ⊂ supp(J , µ) (in a neighborhood of Z). If s ≥ 2 then by blowing up C = Hs

a

we separate divisors contributing to Hs
a, thus creating new points all with s(x) < s. If

s = 1 then by Lemma 5.3.7, Hs
α ⊂ supp(J , µ) is a codimension one component and by

blowing up Hs
α we create all new points off supp(J , µ).

Note that all Hs
α ⊂ supp(J , µ) will be blown up first and we reduce the situation to

the case where no Hs
α is contained in supp(J , µ).

Step 1ab. Moving supp(J , µ) and Hs
α apart.
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After the blow-up in Step 1aa we arrive at MpZp
for which no Hs

α is contained in

supp(J p, µ) (in a neighborhood of Z), where p = 0 if there were no such components and

p = 1 if there were some. Let Us
α := Mp \

⋃
β 6=αH

s
β Zs

α := Z ∩Hs
α ∩ supp(J p, µ). Note

that by the maximality condition for s all Hs
α ∩ supp(J p, µ) are disjoint for two different

α ∈ As. By definition Zs
α ⊂ supp(J p, µ) ∩Hs

α ⊂ U
s
α is compact. Set

Z̃s =
∐

Zs
α Zs =

⋃
Zs

α = Z ∩ supp(J p, µ) M̃p :=
∐

Us
α H̃s :=

∐
Hs

α ∩ U
s
α

Consider the surjective local analytic isomorphism φ : M̃p :=
∐
Us

α → Mp. Note that
Zs

α is disjoint from Us
α′ , where α′ 6= α. The morphism φ defines a morphisms of germs

φZ : M̃fZs →MZs which is locally an isomorphism

M̃fZs ⊇ φ
−1(Us

αZs
α
) ≃ Us

αZs
α
⊆MZs .

Denote by J̃ the pull back of the ideal sheaf J via φZ . The closed embeddings

Hs
α ∩ U

s
α ⊂ U

s
α define the closed embedding H̃s ⊂ M̃ . Let ZH := Z ∩H.

Construct by the inductive assumption the canonical resolution (H̃si

iZHi
) of J̃

p|fHs . By

Proposition 5.6.4 such a resolution defines a multiple test blow-up (M̃iZi
) of (J̃p, µ) (and

of (J , µ)). By Proposition 5.6.4,

supp((J̃i, µ)| eHs) = supp(J̃i, µ) ∩ H̃s.

Descending the multiple test blow-up to MZs , defines a multiple test blow-up of (J i, µ)
such that

supp((J i, µ)|Hs
α
) = supp(J i, µ) ∩Hs

α.

This creates a marked ideal (J j1 , µ) with support disjoint from all Hs
α.

Conclusion of the algorithm in Step 1a. After performing the blow-ups in
Steps 1aa and 1ab for the marked ideal (J , µ) we arrive at a marked ideal (J j1 , µ) with

sj1 < s0. Now we put s = sj1 and repeat the procedure of Steps 1aa and 1ab for (J j1 , µ).

Note that any Hs
αj1

on Mj1 is the strict transform of some intersection H
sj1
α of s = sj1

divisors in E on M . Moreover by the maximality condition for all si, where i ≤ j1 and
α 6= α′, the set supp(J i, µ) ∩Hsi

α′i is either disjoint from H
sj1

αi or contained in it. Thus

for 0 ≤ i ≤ j1, all centers Ci have components either contained in H
sj1

αi = Hs
αi or disjoint

from them and by Proposition 5.6.4,

supp((J i, µ)|Hs
αi

) = supp(J i, µ) ∩Hs
αi.

Moreover if we repeat the procedure in Steps 1aa and 1ab the above property will still
be satisfied until either (J i, µ)|Hs

α
are resolved as in Step 1ab or Hs

α disappear as in Step
1aa.

We continue the above process till sjk
= sr = 0. Then (Mj)0≤j≤r is a multiple

test blow-up of (M,J , E, µ) such that supp(J r, µ) does not intersect any divisor in E.
Therefore (Mj)0≤j≤r and further longer multiple test blow-ups (Mj)0≤j≤r0

for any r ≤ r0
can be considered as multiple test blow-ups of (M,J , ∅, µ) since starting from Mr the
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strict transforms of E play no further role in the resolution process since they do not
intersect supp(J j , µ) for j ≥ r.

Step 1b. Nonboundary case

Let (MjZj
)0≤j≤r be the multiple test blow-up of (M,J , ∅, µ) defined in Step 1a.

Step 1ba. Eliminating the codimension one components of supp(J r, µ).
If supp(J r, µ) is of codimension 1 then by Lemma 5.3.7 all its codimension 1 compo-

nents are smooth and disjoint from the other components of supp(J r, µ). These com-
ponents are strict transforms of the codimension 1 components of supp(J , µ). Moreover
the irreducible components of the centers of blow-ups were either contained in the strict
transforms or disjoint from them. Therefore Er will be transversal to all the codimension
1 components. Let codim(1)(supp(J i, µ)) be the union of all components of supp(J i, µ))
of codimension 1. By Lemma 5.3.7 blowing up the components reduces the situation to
the case when supp(J , µ) is of codimension ≥ 2.

Step 1bb. Eliminating the codimension ≥ 2 components of supp(J r, µ).
For any x ∈ Z ∩ supp(J , µ) \ codim(1)(supp(J , µ)) ⊂ MZ find a tangent direction

uα ∈ D
µ−1(J ) on some neighborhood Uα of x. Then Hα := V (uα) ⊂ Uα is a hypersurface

of maximal contact. Take a finite open covers (Uα) and (Vα) of Z such that the ideal
sheaf is defined on each Uα, Vα ⊂ Uα is compact , and Uα satisfies the property of Glueing
Lemma. Let Zα := Z ∩ Vα and ZV,α ⊂ Zα be any compact set contained in Z ∩ Vα. Set

Ṽ :=
∐

V α Z̃V :=
∐

ZV α M̃ :=
∐

Uα Z̃ :=
∐

Zα H̃ :=
∐

Hα ⊆ M̃

The closed embeddingsHα ⊆ Uα define the closed embedding H̃ ⊂ M̃ of a hypersurface

of maximal contact H̃.
Consider the surjective local analytic isomorphism

φU : M̃ :=
∐

Us
α →M.

It defines a morphism of germs φZV
: M̃eZ → MZ . Denote by J̃ the pull back of the

ideal sheaf J via φU . The multiple test blow-up (MiZi
)0≤i≤p of J defines a multiple test

blow-up (M̃eZii
)0≤i≤p of J̃ and a multiple test blow-up (H̃i)0≤i≤p of J̃H .

Let Uα,i ⊂Mi be the inverse image of Uα and let Hαi ⊂ Uαi denote the strict transform

of Hα. By Lemma 5.6.5, (Hαi)0≤i≤p is a multiple test blow-up of (Hα,J |Hα
, ∅, µ). In

particular the induced marked ideal for i = p is equal to

J p|Hαp
= (Hαp,J p|Hαp

, (Ep \ E)|Hαp
, µ).

Construct the canonical resolution of (H̃iZi
)p≤i≤mu

of the marked ideal J̃p| eHp
on H̃eZ .

It defines, by Lemma 5.6.5, a resolution (M̃ieZi
)p≤i≤m of J̃p and thus also a resolution

(M̃ieZi
)0≤i≤m of (M̃Z , J̃ , ∅, µ). Moreover both resolutions are related by the property

supp(J̃i) = supp(J̃i| eHi
).
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The resolution (M̃ieZi
)0≤i≤m defines the canonical resolution (ṼieZV i

)0≤i≤m for any

compact ZV ⊂ Ṽ .
Consider the surjective local analytic isomorphism

φV : Ṽ :=
∐

Vα →M.

We have to show that the resolution (Ṽ
igZV i

)0≤i≤m descends to the resolution

(MiZi
)0≤i≤m which is independent of the choice of local hypersurfaces of maximal contact

and M̃ . We show by induction that there exists a resolution (MiZV i
))0≤i≤m such that its

restriction ((Hα)iZV
α
i
))k≤i≤m is an extension of the part of the canonical resolution.

Consider the inverse image

φ−1
j (Vβ,i) =

∐
Vβ,j ∩ Vα,j .

Let C̃j be the center of the blow-up σ̃j : Ṽj+1 → Ṽj . If C̃j ∩ Vβ,j ∩ Vα,j 6= ∅ then

C̃j ∩ Vβ,j defines the center of an extension of the part of the canonical resolution

((Hβj)ZV βj
)p≤j≤m. By the canonicity the intersection C̃j ∩ Vβ,j ∩ Vα,j defines the center

of an extension of the part of the canonical resolution ((Hβj ∩ Vαj)ZV βj∩ZV βj
)p≤j≤m.

By Glueing Lemma 5.5.3 for the tangent directions uα and uβ we find an automorphism
φiαβ of (Uβi ∩ Uαi)Zβj∩Zβj

and its restriction to (Vα ∩ Vβ)ZV βj∩ZV βj
)p≤j≤m.

such that

(1) (φiαβ)(Hαi) = Hβi.

(2) φαβi is the identity for supp(J i)

(3) φαβi preserves the marked ideal J i

(4) φiαβ(J i|Hαi
) = J i|Hβi

Its restriction to (Vα ∩ Vβ)ZV α∩ZV β
defines an automoprhism for any compact

ZV α ⊂ Z ∩ Vα and ZV β ⊂ Z ∩ Vβ . By the above C̃j ∩ (Vβ,j ∩ Vα,i)ZV βj∩ZV βj
is the

center of the canonical resolution of J i|Hβi
and of J i|Hαi

. Thus the restriction of the

natural embedding C̃j ∩ (Vβ,j ∩ Vα,i)ZV αj∩ZV βj
⊂ (C̃j ∩ Vα,i)ZV αi

is an open embedding

and C̃j descends to a smooth center Cj :=
⋃
C̃j ∩ Vα,jZV αj

⊂
⋃
VαjZV αj

= MjZj
.

Step 2. Resolving marked ideals (MZ , I, E, µ).
For any marked ideal (MZ , I, E, µ) write

I =M(I)N (I),

whereM(I) is the monomial part of I, that is, the product of the principal ideals defining
the irreducible components of the divisors in E, and N (I) is a nonmonomial part which
is not divisible by any ideal of a divisor in E. Let

ordN (I) := max{ordx(N (I)) | x ∈ Z ∩ supp(I, µ)}.
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Definition 6.0.7. (Hironaka, Bierstone-Milman, Villamayor, Encinas-Hauser) By the
companion ideal of (I, µ) where I = N (I)M(I) we mean the marked ideal of maximal
order

O(I, µ) =

{
(N (I), ordN (I)) + (M(I), µ− ordN (I)) if ordN (I) < µ,
(N (I), ordN (I)) if ordN (I) ≥ µ.

Step 2a. Reduction to the monomial case by using companion ideals.

By Step 1 we can resolve the marked ideal of maximal order (J , µJ ) := O(I, µ). By
Lemma 5.4.1, for any multiple test blow-up of O(I, µ),

supp(O(I, µ))i = supp[N (I), ordN (I)]i ∩ supp[M(I), µ− ordN (HI)]i
= supp[N (I), ordN (I)]i ∩ supp(Ii, µ).

Consequently, such a resolution leads to the ideal (Ir1
, µ) such that

ordN (Ir1
) < ordN (I).Then we repeat the procedure for (Ir1

, µ). We find marked ideals

(Ir0
, µ) = (I, µ), (Ir1

, µ), . . . , (Irm
, µ) such that ordN (I0) > ordN (Ir1

) > . . . > ordN (Irm ).
The procedure terminates after a finite number of steps when we arrive at the ideal
(Irm

, µ) with ordN (Irm ) = 0 or with supp(Irm
, µ) = ∅. In the second case we get the

resolution. In the first case Irm
=M(Irm

) is monomial.
Step 2b. Monomial case I =M(I).
Let Sub(Ei) denote the set of all subsets of Ei. For any subset in Sub(Ei) write a

sequence (D1,D2, . . . , 0, . . .) consisting of all elements of the subset in increasing order
followed by an infinite sequence of zeros. We shall assume that 0 ≤ D for any D ∈ Ei.
Consider the lexicographic order ≤ on the set of such sequences. Then for any two subsets
A1 = {D1

i }i∈I and A2 = {D2
j}j∈J we write

A1 ≤ A2

if for the corresponding sequences (D1
1,D

1
2, . . . , 0, . . .) ≤ (D2

1,D
2
2, . . . , 0, . . .).

Let x1, . . . , xk define equations of the components Dx
1 , . . . ,D

x
k ∈ E through

x ∈ supp(MZ , I, E, µ) and I be generated by the monomial xa1,...,ak at x. Note that
ordx(I) = a1 + . . .+ ak.

Let ρ(x) = {Di1 , . . . ,Dil
} ∈ Sub(E) be the maximal subset satisfying the properties

(1) ai1 + . . .+ ail
≥ µ.

(2) For any j = 1, . . . , l, ai1 + . . .+ ǎij
+ . . .+ ail

< µ.

Let R(x) denote the subsets in Sub(E) satisfying the properties (1) and (2). The
maximal components of supp(I, µ) through x are described by the intersections

⋂
D∈AD

where A ∈ R(x). The maximal locus of ρ determines at most one maximal component of
supp(I, µ) through each x.

After the blow-up at the maximal locus C = {xi1 = . . . = xil
= 0} of ρ, the ideal

I = (xa1,...,ak) is equal to I ′ = (x′
a1,...,aij−1,a,aij+1,...,ak) in the neighborhood correspond-

ing to xij
, where a = ai1 + . . .+ ail

− µ < aij
. In particular the invariant ν drops for all

points of some maximal components of supp(I, µ). Thus the maximal value of ν on the
maximal components of supp(I, µ) which were blown up is bigger than the maximal value
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of ordx(I) on the new maximal components of supp(I, µ). It follows that the algorithm
terminates after a finite number of steps. �

Remarks. (1) (*) The ideal J is replaced with H(J ) to ensure that the algorithm in
Step 1b is independent of the choice of the tangent direction u. We replace H(J )
with C(H(J )) to ensure the equalities supp(J|S) = supp(J ) ∩ S, where S = Hs

α

in Step 1a and S = V (u) in Step 1b.
(2) If µ = 1 the companion ideal is equal to O(I, 1) = (N (I), µN (I)) so the general

strategy of the resolution of I, µ is to decrease the order of the nonmonomial part
and then to resolve the monomial part.

(3) In particular if we desingularize Y we put µ = 1 and I = IY to be equal to the
sheaf of the submanifold Y and we resolve the marked ideal (MZ , I, ∅, µ). The
nonmonomial part N (Ii) is nothing but the weak transform (σi)w(I) of I.

7. Conclusion of the resolution algorithm

7.1. Commutativity of resolving marked ideals (MZ , I, ∅, 1) with

embeddings of ambient manifolds

Let (MZ , I, ∅, 1) be a marked ideal and φ : MZ →֒M ′
Z be a closed embedding of germs

of manifolds. Then φ defines the marked ideal (M ′
Z , I

′, ∅, 1), where I ′ = φ∗(I) · OM ′
Z

(see remark after Theorem 2.0.1). We may assume that MZ is a germ of the subman-
ifold M of M ′ which is locally generated by coordinates u1, . . . , uk. Then u1, . . . , uk in
I ′(U ′) = T (I)(U ′) define tangent directions on some open U ′ ⊂ M ′

Z . We run Steps 2a
and 1bb of our algorithm. That is, we pass to the hypersurface V (u1) and replace I
with its restriction. By Step 1bb resolving (M ′

Z , I
′, ∅, µ) is locally equivalent to resolving

(V (u1)Z , I ′|V (u1)
, ∅, µ).

By repeating the procedure k times and restricting to the tangent directions u1, . . . , uk

of the marked ideal I on MZ we obtain:
Resolving (M ′

Z , I
′, ∅, µ) is equivalent to resolving (MZ , I, ∅, µ).

7.2. Principalization

Resolving the marked ideal (MZ , I, ∅, 1) determines a principalization commuting with
local analytic isomorphisms and embeddings of the ambient manifolds.

The principalization is often reached at an earlier stage upon transformation to the
monomial case (Step 2b) (However the latter procedure does not commute with embed-
dings of ambient manifolds)
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7.3. Weak embedded desingularization

Let Y be a closed subspace of the germ MZ . Consider the marked ideal (MZ , IY , ∅, 1).
Its support supp(IY , 1) is equal to Y . In the resolution process of (MZ , IY , ∅, 1), the strict
transform of Y is blown up. Otherwise the generic points of Y would be transformed
isomorphically, which contradicts the resolution of (MZ , IY , ∅, 1).

7.4. Bravo-Villamayor strengthening of the weak embedded desingu-

larization

Theorem 7.4.1. (Bravo-Villamayor [13], [11]) Let Y be a closed subspace of a manifold
M and Y =

⋃
Yi be its decomposition into the union of irreducible components. There is

a canonical locally finite resolution of a subspace Y ⊂ M , subject to the conditions from

Theorem 2.0.2 such that the strict transforms Ỹi of Yi are smooth and disjoint. Moreover
the full transform of Y is of the form

(σ̃)∗(IY ) =M((σ̃)∗(IY )) · IeY ,
where Ỹ :=

⋃
Ỹi ⊂ M̃Z is a disjoint union of the strict transforms Ỹi of Yi, IeY is the

sheaf of ideals of Ỹ and M((σ̃)∗(IY )) is the monomial part of (σ̃)∗(IY ).

Proof. Let I := IY be the ideal sheaf of Y . Fix any compact set Z ⊂M .
We use the following:
Modified algorithm in Step 2. We run the algorithm of resolving (MZ , I, ∅, 1) as

before until we drop the max{ordx(N (I)) : x ∈ supp(I)} to 1. The control transform of
(I, 1) becomes equal to (M(I)N (I), 1). At this point algorithm is altered. We resolve
the monomial ideal (M(I), 1). The blow-ups are performed at exceptional divisors for
which ρ(x) is maximal. We arrive at the purely nonmonomial case I ′ = N (I ′), where
max{ordx(I) : x ∈ supp(I ′) ∩ Z} = 1. This concludes the altered procedure in Step 2.
At this point we perform the altered Step 1 described below.

Modified algorithm in Step 1. In Step 1a we move the “old divisors” E as before.
In Step 1b we consider two possibilities. If I ′ = (u) is the ideal of smooth hypersurface
of (maximal contact) as in Step 1ba) the algorithm is stopped. Otherwise we restrict
(I ′, 1) = C(H(I)) to a hypersurface of maximal contact V (u1).

The modified algorithm in Step 2 and Step 1 is then repeated for the restriction
I ′|V (u1).

We continue this procedure until it terminates. Then the resulting controlled transform
of (I, 1) is locally equal to I ′′ = (u1, . . . , uk), where ui are coordinates transversal to
exceptional divisors. The sheaf I ′′ desribes the germ of submanifold which is a union
of disjoint irreducible components. Some of them are the strict transforms of Yi. Other
components are possible strict transforms of embedding components occuring the process.
At the end we blow-up all the irreducible components which are not strict transforms of
Yi. The procedure is canonical. It is defined for germs of analytic subspace at compact
sets and it glues to the algorthm for whole subspace of manifolds.
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