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Slicing planar grid diagrams: a gentle introduction to

bordered Heegaard Floer homology

Robert Lipshitz, Peter Ozsváth, Dylan Thurston

Abstract. We describe some of the algebra underlying the decomposition of planar
grid diagrams. This provides a useful toy model for an extension of Heegaard Floer

homology to 3-manifolds with parametrized boundary. This paper is meant to serve
as a gentle introduction to the subject, and does not itself have immediate topological
applications.
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1. Introduction

The Heegaard Floer homology groups of Ozsváth and Szabó are defined in terms of
holomorphic curves in Heegaard diagrams. In [7], Heegaard Floer homology is extended
to three-manifolds with (parameterized) boundary, by studying holomorphic curves in
pieces of Heegaard diagrams. The resulting invariant, bordered Heegaard Floer homology,
has the following form. To an oriented surface F (together with an appropriate Morse
function on F ), bordered Heegaard Floer associates a differential graded algebra A(F ).
To a three-manifold Y together with a homeomorphism F → ∂Y , bordered Heegaard

Floer associates a right (A∞) module ĈFA(Y ) over A(F ) and a left (differential graded)

module ĈFD(Y ) over A(−F ). (Here, −F denotes F with its orientation reversed.) These
modules, which are well-defined up to homotopy equivalence, relate to the closed Heegaard

Floer homology group ĤF via the following pairing theorem:

Theorem 1 ([7]). Suppose that Y = Y1∪F Y2. Then ĈF (Y ) ≃ ĈFA(Y1) ⊗̃A(F ) ĈFD(Y2).

(Recall that ĈF (Y ) is the chain complex underlying the Floer homology group ĤF (Y ).
The notation ⊗̃ denotes the derived tensor product, and the symbol ≃ denotes quasi-
isomorphism.)

The definitions of the invariants ĈFA and ĈFD are, unfortunately, somewhat involved.
There are two kinds of complications which obscure the basic ideas involved:

• Analytic complications. The definitions of the invariants ĈFA and ĈFD in-
volve counting pseudo-holomorphic curves. In spite of much progress over the
last decades, holomorphic curve techniques remain somewhat technical, and of-
ten require seemingly unnatural contortions. To make matters worse, the analytic
set up is, by necessity, somewhat nonstandard; in particular, it involves counting
curves in a manifold with “two kinds of infinities.”

• Algebraic complications. The invariant ĈFA is, in general, not an honest
module but only an A∞-module. While the subject of A∞ algebra is increasingly
mainstream, it still adds a layer of obfuscation to the study of bordered Heegaard
Floer homology. Further exacerbating the situation is a somewhat novel kind of
grading.

In developing bordered Heegaard Floer homology we found it useful to study a toy
model, in terms of planar grid diagrams, in which these complications are absent. It is
the aim of the present paper to present this toy model. We hope that doing so will make
the definition of bordered Heegaard Floer homology in [7] more palatable.

We emphasize up front that the main objects of study in this paper do not give topo-
logical invariants. Still, the algebra involved is reminiscent of well-known objects from
representation theory—in particular, the nilCoxeter algebra—so this paper may be of
further interest.

Throughout this paper, F will denote the field with two elements and A will denote
F[U1, . . . , UN ] (for whichever N is in play at the time).
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2. Background on knot Floer homology and grid diagrams

We start by recalling the combinatorial definition of Manolescu-Ozsváth-Sarkar [8] of
the knot Floer homology groups.

Let K be an oriented knot in S3. Choose a knot diagram D for K such that

• D is composed entirely of horizontal and vertical segments,
• no two horizontal segments of D have the same y-coordinate, and no two vertical

segments of D have the same x-coordinate, and
• at each crossing, the vertical segment crosses over the horizontal segment.

(Every knot admits such a diagram; see Figure 1.) The only data in such a diagram are
the endpoints of the segments, which we record by placing X’s and O’s at these endpoints,
alternately around the knot, and so that the knot is oriented from X to O along vertical
segments. Notice that no two X’s (respectively O’s) lie on the same horizontal or vertical
line.

Let X = {Xi}
N
i=1 and O = {Oi}

N
i=1 denote the set of X’s and O’s, respectively. Up to

isotopy of the knot (and renumbering of the Xi), we may assume that the coordinates
of Xi are

(
i − 1

2 , σX(i) − 1
2

)
for some permutation σX ∈ SN . Then (after renumbering),

the coordinates of Oi are
(
i − 1

2 , σO(i) − 1
2

)
for some permutation σO ∈ SN . The data

(R2, X, O) is a planar grid diagram for the knot K.
We can also view X and O as subsets of the torus T = R2/〈(N, 0), (0, N)〉. The data

(T, X, O) is a toroidal grid diagram for the knot K. It is easy to recover the knot K
(up to isotopy) from the toroidal grid diagram (T, X, O). We call the process of passing
from a planar grid diagram to a toroidal grid diagram wrapping. The inverse operation
of passing from a toroidal grid diagram to a planar grid diagram, which depends on a
choice of two circles in T , we call unwrapping.

The N + 1 lines αi = {y = i} ⊂ R2, i = 0, . . . , N , descend to N disjoint circles αi in
the torus T , with α0 = αN . Similarly, the N + 1 lines βi = {x = i} ⊂ R2, i = 0, . . . , N ,
descend to N disjoint circles βi in T . Notice that each αj (respectively αj) intersects

each βi (respectively βj) in a single point. Set α =
⋃N

i=0 αi, α =
⋃N

i=1 αi, β =
⋃N

i=0 βi

and β =
⋃N

i=1 βi. We view the αi as “horizontal” and the βi as “vertical”. This means

that components of T \
(
α ∪ β

)
(little rectangles) have, for instance, lower left corners,

lower right corners, and so on.
We define the knot Floer chain complex CFK−(K) as follows. Let A = F[U1, . . . , UN ].

By a toroidal generator we mean an N -tuple of points x = {xi ∈ ασ(i) ∩ βi}, one on each

α-circle and one on each β-circle. Generators, then, are in bijection with the permutation
group SN—but this bijection depends on a choice of unwrapping. Let S(T, X, O) denote
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Figure 1. Representing a knot by a grid diagram. Starting with
a knot diagram D, one approximates D using horizontal and vertical
segments, so that crossings are always vertical over horizontal. Perturb
the result so that no segments lie on the same horizontal or vertical line,
and mark the endpoints alternately with X’s and O’s. The data of the
knot is entirely encoded in these X’s and O’s, which we can see as sitting
in the middle of squares on a piece of graph paper.

the set of generators. The knot Floer complex CFK−(K) is freely generated over A by
S(T, X, O).

For two generators x = {xi} and y = {yi}, we define a set Rect(x,y). The set
Rect(x,y) is empty unless all but two of the xi agree with corresponding yi. In that case,
let {i, j} = {k | xk 6= yk}; then Rect(x,y) is the set of embedded rectangles R in T with
boundary on α ∪ β, and such that xi and xj are the lower-left and upper-right corners
of R (in either order), and yi and yj are the upper-left and lower-right corners of R (in

either order). (Consequently, Rect(x,y) always has either zero or two elements.) Call a
rectangle R ∈ Rect(x,y) empty if the interior of R contains no point in x, and define

Rect
◦
(x,y) to be the set of empty rectangles in Rect(x,y). Given a rectangle R, define

Oi(R) to be 1 if Oi lies in the interior of Ri and zero otherwise. Define Xi(R) similarly,

and set O(R) =
∑N

i=1 Oi(R) and X(R) =
∑N

i=1 Xi(R). Set U(R) =
∏

i U
Oi(R)
i .

Now, define

∂x =
∑

y∈S(T,X,O)

∑

R∈Rect
◦

(x,y)
X(R)=0

U(R) · y. (2.1)

Lemma 2.2. Formula (2.1) defines a differential, i.e., ∂2 = 0.

This is not hard to prove [9, Proposition 2.8]. See Figure 2 for some of the cases.
By composing rectangles, we get more complicated regions in T , called domains. By a

domain connecting x to y we mean a cellular two-chain B in (T,α∪β) with the following
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property. Let ∂αB denote the intersection of ∂B with α. Then we require ∂(∂αB) = y−x.
We can define Oi(B), Xi(B), O(B), X(B), and U(B) in the same way as for rectangles.

There are two Z-gradings on CFK−(K), the Maslov or homological grading, denoted
µ, and the Alexander grading, denoted A. These have the property that ∂ preserves A
and lowers µ by 1. We give the combinatorial characterization of A and µ from [9], up to
an overall shift. First, some notation. Given sets E and F in R2, let I(E,F ) denote the
number of pairs (e, f) ∈ E × F such that e lies to the lower left of f (i.e., the number of
pairs e = (e1, e2) ∈ R2 and f = (f1, f2) ∈ R2, such that e1 < f1 and e2 < f2).

Now, fix an unwrapping (R2, X, O) of the diagram (T, X, O), so a generator
x ∈ S(T, X, O) corresponds to a N -tuple of points u(x) in R2. Then, for some con-
stants CA and Cµ depending on the diagram and the unwrapping (but not on x),

A(x) = I(X,x) − I(O,x) + CA

µ(x) = I(x,x) − 2I(O,x) + Cµ,

cf. [9, Formulas (1) and (2)], bearing in mind that I(X,x) differs from I(x, X) by a
constant. Together with the property that A(Ui) = −1 and µ(Ui) = −2 this characterizes
A and µ up to overall additive constants.

A fundamental result of Manolescu, Ozsváth, and Sarkar [8] states that the complex
CFK−(K) defined above is bi-graded homotopy equivalent to the complex CFK−(K)
defined by Ozsváth and Szabó [10] and also by Rasmussen [11]. It follows, in particular,
that the homotopy type of CFK−(K) is independent of the toroidal grid diagram for K.
The fact that the homotopy type of CFK−(K) depends only on the knot K can also be
proved combinatorially [9].

2.1. Planar Floer Homology

In this paper we will study a modification of the grid diagram construction of CFK−,
which we call the planar Floer homology and denote CP−, obtained by replacing toroidal
grid diagrams by planar grid diagrams throughout the definition of CFK−. In the planar
setting, when we have N different X’s we will have N + 1 different α- (respectively β-)
lines: we view the process of wrapping the diagram as identifying α0 with αN , and β0

with βN . Thus, a generator over A of the complex CP−(X, O) is an (N + 1)-tuple of
points x = {xi ∈ ασ(i) ∩ βi}

N
i=0. The set S(R2, X, O) is in canonical bijection with the

symmetric group SN+1.
Given generators x and y in S(R2, X, O), let Rect◦(x,y) denote the set of empty

rectangles in R2 connecting x to y; for each x and y the set Rect◦(x,y) is either empty
or has a single element. The differential on CP− is defined analogously to Formula (2.1):

∂x =
∑

y∈S(R2,X,O)

∑

R∈Rect◦(x,y)
X(R)=0

U(R) · y. (2.3)

Lemma 2.4. Formula (2.3) defines a differential, i.e., ∂2 = 0.

95



LIPSHITZ, OZSVÁTH and THURSTON

Figure 2. Illustration of why ∂2 = 0 for planar Floer homology.
Left: The contributions to the coefficient of y from taking the two shaded
rectangles in the two orders cancel. Right: This “L”-shaped domain can
be decomposed into two rectangles in two different ways, by making either
a horizontal cut or a vertical cut. These two contributions cancel.

The proof, which is a strict sub-proof of the proof for toroidal grid diagrams, is illus-
trated in Figure 2.

The complex CP−(X, O) has Alexander and Maslov gradings A and µ, defined exactly
as they were for CFK−(K). We fix the additive constants by setting

A(x) = I(X,x) − I(O,x)

µ(x) = I(x,x) − 2I(O,x).

Warning: The homotopy type of the complex CP−(X, O) is not an invariant
of the underlying knot K. This is illustrated in Example 2.5. The results of this
paper, thus, do not directly give new topological invariants.

Example 2.5. Consider the planar grid diagrams for the unknot shown in Figure 3. The
diagram on the left has N = 1. The complex has two generators over F[U1], which we
label with the permutations [1 2] and [2 1] in one-line notation. (Here the one-line notation

[2 3 1], for instance, means the permutation {1 7→ 2, 2 7→ 3, 3 7→ 1}.) The differential is

trivial, so the homology of the complex is F[U1]
⊕2.

The diagram on the right has N = 2. The complex has six generators. The differential
is given by

∂[2 3 1] = U1[3 2 1]

∂[3 1 2] = U2[3 2 1]

∂[3 2 1] = ∂[1 2 3] = ∂[1 3 2] = ∂[2 1 3] = 0.

The homology of the complex is

F
〈
[3 2 1]

〉
⊕ F[U1, U2]

〈
[1 2 3], [1 3 2], [2 1 3], U2[2 3 1] + U1[3 1 2]

〉
.

This is certainly not the same as F[U1]
⊕2.
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Figure 3. Planar grid diagrams for the unknot. Left: a diagram
with N = 1. Right: a diagram with N = 2. The corresponding planar
Floer complexes are not homotopy equivalent (Example 2.5).

3. Slicing planar grid diagrams

Fix a planar grid diagram H = (R2, X, O). The goal of this paper is to compute the
complex CP−(H) by cutting the diagram vertically into pieces. (For now, we consider
only cutting H into two pieces; we will consider more general cuttings in Section 9.1.) We
want to associate something (ultimately, it will be a differential module) to each side, and
something (ultimately, it will be a differential graded algebra) to the interface between
the two sides. We want these to contain enough information to reconstruct CP−(H)—but
as little information as possible beyond that, so as to be computable.

So, let Z be the vertical line {x = k − 1/4} and consider what each side of Z looks
like. To the left of Z we have k vertical lines β0, . . . , βk−1, as well as two injective
maps XA : {1, . . . , k} → {1, . . . , N} and OA : {1, . . . , k} → {1, . . . , N}. Similarly, to the
right of Z we have N + 1 − k vertical lines βk, . . . , βN , as well as two injective maps
XD : {k + 1, . . . , N} → {1, . . . , N} and OD : {k + 1, . . . , N} → {1, . . . , N}. There are also
N + 1 α-lines, which intersect both sides of the diagram. Finally, at the interface Z we
see N + 1 points {(i, k − 1/4)}N

i=0 where the αi intersect Z. See Figure 4.
Let HA denote the half-plane to the left of Z, and HD the half-plane to the right of

Z. We will call the data HA = (HA, XA, OA) or HD = (HD, XD, OD) a partial planar
grid diagram. If we view Z as oriented upwards then there is a distinction between HA

and HD: for HA the induced orientation of Z agrees with the given one, while for HD

the induced orientation differs. We will call the first case “type A” and the second case
“type D.” We say that HA has height N + 1 and width k, and HD has height N + 1 and
width N + 1 − k.

Finally, a generator x = {xi}
N
i=0 corresponds to k points xA = {xi ∈ ασA(i)∩βi}

k−1
i=0 to

the left of Z and N +1−k points xD = {xi ∈ ασD(i)∩βi}
N
i=k to the right of Z. Here, σA is

an injection {0, . . . , k−1} → {0, . . . , N} and σD is an injection {k, . . . , N} → {0, . . . , N}.
For use later, let S(HA) denote the set of k-tuples xA = {xi ∈ ασA(i)∩βi}

k−1
i=0 where σA is
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Figure 4. Cutting a planar grid diagram. The resulting diagrams
HA and HD have N = 7 and k = 3.

an injection {0, . . . , k−1} → {0, . . . , N}. Let S(HD) denote the set of (N +1−k)-tuples
xD = {xi ∈ ασD(i) ∩ βi}

N
i=k where σD is an injection {k, . . . , N} → {0, . . . , N}.

4. Motivating the answer

The purpose of this section is to motivate the answers which will be described in later
sections; thus, it can be skipped by the impatient reader without sacrificing mathematical
content.

We want to associate some kind of object, which with hindsight we will call CPA−(HA)
to HA, and some other kind of object CPD−(HD) to HD. These should be objects in some
(algebraic) categories CA and CD associated to the interface Z (together perhaps with a
little additional data). We would also like a pairing map P from CA×CD to Db(A−Mod),
the derived category of complexes over the ground ring A, so that CP−(H) = P (HA,HD).
The (derived) category of chain complexes of (right/left) A-modules for any A-algebra A
admit such a pairing map, so this seems like a reasonable example to keep in mind. (That
is also how the story goes in Khovanov homology [3], which is encouraging.)

Since a generator x of CP−(H) decomposes as a pair (xA,xD), it seems reasonable
that CPA−(HA) would be generated—in some sense to be determined—by S(HA) and
that CPD−(HD) would be generated by S(HD).

Not every pair (xA,xD) ∈ S(HA) × S(HD) corresponds to a generator in S(H): the
necessary and sufficient condition is that the images of the injections σA and σD be
disjoint. It seems reasonable that our putative A would remember this—that if σA

1 and
σA

2 have different images then corresponding generators xA
1 and xA

2 would “live over”
different “objects” in A. In the language of differential graded categories (see, e.g., [2]),
this makes sense; for algebras this can be encoded via idempotents. That is, suppose A has(
N+1

k

)
different primitive idempotents IS , one for each k-element subset S of {0, . . . , N}.

Then we could say xAIS = xA if and only if S = Im(σA), and ISxD = xD if and only if
S ∩ Im(σD) = ∅; otherwise these products are 0. It then follows that an expression of the
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form xA ⊗A xD is nonzero if and only if (xA,xD) actually corresponds to a generator in
S(H). We will write S(xA) to denote Im(σA), and S(xD) to denote {0, . . . , N}\ Im(σD).

There are three kinds of rectangles which contribute to the differential on CP−(H):

• Rectangles contained entirely in HA. It seems reasonable that these should con-
tribute to a differential on CPA−(HA), and there is an obvious way for them to
do so.

• Rectangles contained entirely in HD. Again, it seems reasonable to let these
contribute to a differential on CPD−(HD).

• Rectangles which cross through the interface Z. It is somewhat less clear how to
count these.

Let R be a rectangle crossing through Z. Each of CPA−(HA) and CPD−(HD) see
Z as a half strip, and these half strips should somehow be involved in the definitions
of CPA−(HA) and CPD−(HD). The rectangle R intersects Z in a segment running
from some αi to some αj (with i < j by convention). If R is in Rect(x,y), with
x = (xA,xD) and y = (yA,yD), then the objects (idempotents) associated to xA and yA

differ: S(yA) =
(
S(xA) \ i

)
∪ j. The objects S(xD) and S(yD) differ in the same way.

So, we could view R∩Z as an “arrow” from S(xA) to S(yA) or, in the algebra language,
as an element ρ of A for which IS(xA) · ρ · IS(yA) = ρ.

Actually, since a single rectangle in H can be in Rect(x,y) for many different x and
y, the chord R ∩ Z gives many arrows. More specifically, for any set S with i ∈ S and
j /∈ S, R ∩ Z gives an arrow ρS,i,j , with the property that IS · ρS,i,j · IT = ρS,i,j , where
T = (S \ i) ∪ j. We can view these as coming from a single element ρi,j =

∑
S ρS,i,j by

multiplying with an idempotent. In some sense, ρi,j “is” R ∩ Z.
With this in mind, there are two ways we can think of the effect of the rectangle R on

one of the sides:

• It could start at Z, as the element ρi,j , and then come in to act on the module,
moving one of the dots in the generator x to get the new generator y (if not
blocked). This is the point of view we will take for CPA−.

• It could originate inside the partial diagram, and then propagate out to the bound-
ary (if not blocked), leaving a residue ρi,j in A when it reaches the boundary. This

is the point of view we will take for CPD−.

The two perspectives fit naturally with the pairing theorem: each rectangle crossing the
boundary starts in HD, propagates out to the boundary, and then propagates through
to HA.

More precisely, define CPA−(HA) to be generated over the base ring A by S(HA). We
have already defined an action of the idempotents of A on CPA−. Define a right action of
A on CPA− by setting xA · ρi,j = U(H) · yA if there is an empty half strip H connecting
xA and yA with rightmost edge equal to ρi,j (and not crossing any Xk). (Here U(H) is
the obvious extension of the earlier notation to domains with boundary on Z.) Define
the product to be zero otherwise. Define the differential on CPA− to count rectangles
entirely contained in HA, in the obvious way.
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LIPSHITZ, OZSVÁTH and THURSTON

Figure 5. Domains in HD forcing relations and a differential A.
Part (a) forces ρi,j and ρl,m to commute. Part (b) forces ρi,m and ρj,l to
commute. Part (c) forces ρi,j · ρj,l = ρi,l. Part (d) forces the algebra to
have a differential, and part (e) forces the product ρi,l · ρj,m to vanish.

Define CPD−(HD) to be “freely” generated as a left A-module by S(HD). (More
precisely, CPD− is as free as possible given the action of the idempotents we have already
defined. It is a direct sum of elementary modules, one for each element of S(HD).) Thus,
the module structure on CPD− is rather dull. Define the differential on CPD− as follows:
given generators xD,yD ∈ S(HD), define Half◦(ρi,j ;x

D,yD) to be the set of empty half
strips connecting xD to yD with boundary ρi,j ; see Figure 9. (The set Half◦(ρi,j ;x

D,yD)
is either empty or has a single element.) Define

∂xD =
∑

yD

∑

R∈Rect◦(xD,yD)
X(R)=0

U(R) · y +
∑

yD

∑

ρi,j

∑

H∈Half◦(ρi,j ;x
D,yD)

X(H)=0

U(H) · ρi,jy.

Remark 4.1. The A in CPA− is a mnemonic for the fact that the half-strips are included
in the algebra action on CPA−. The D in CPD− is a mnemonic for the fact that the
half-strips are included in the d ifferential on CPD−.

It is fairly clear that CPA−(HA) ⊗A CPD−(HD) = CP−(H). All rectangles not
crossing the interface are obviously accounted for. If R ∈ Rect(x,y) is a rectangle crossing
the interface, with R ∩ Z = ρi,j , then

∂(xA⊗xD) = xA⊗(∂xD)+ · · · = xA⊗ρi,j ·y
D + · · · = xAρi,j ⊗yD + · · · = yA⊗yD + · · · ,

as desired.
What is not clear—and, a priori, not true—is that CPA− and CPD− are, in fact, chain

complexes (differential modules) over A. Indeed, trying to make CPD− into a module
forces certain relations—and a differential—on the algebra A.

Consider the module CPD−(HD). In Part (a) of Figure 5 is a plausible piece of HD.
One sees here several generators; we single out {a, c}, {a, d}, {b, c} and {b, d}. Parts of
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the shaded region contribute to the differential as follows:

∂{a, c} = ρl,m{b, c} + ρi,j{a, d} + · · ·

∂{b, c} = ρi,j{b, d} + · · ·

∂{a, d} = ρl,m{b, d} + · · · .

(Here, the dots indicate contributions from regions of the diagram other than the shaded
one. The philosophy is that cancellation should be local in HD.)

Thus, one has

∂2{a, c} = (ρl,m · ρi,j + ρi,j · ρl,m) {b, d} + · · · .

So, in order to have ∂2 = 0 we should require that ρi,j and ρl,m commute.
Similarly, one sees by examining the shaded region in Part (b) of Figure 5 that ρi,m

and ρj,l should commute.
In Part (c), consider the differentials

∂{a, d} = ρi,j{a, e} + ρi,l{c, d} + · · ·

∂{a, e} = ρj,l{b, e} + · · ·

∂{c, d} = {b, e} + · · · .

Here,

∂2{a, d} = ρi,j · ρj,l{b, e} + ρi,l{b, e} + · · · .

Thus, we should set ρi,j · ρj,l = ρi,l—a relation which looks rather reasonable in its own
right.

Part (d) is a little trickier. Considering the generators {a}, {b} and {c} we have

∂{a} = ρj,l{b} + ρi,l{c} + · · ·

∂{b} = ρi,j{c} + · · ·

∂{c} = 0 + · · · .

Thus, it seems we have ∂2{a} = ρj,l · ρi,j{c}. One might try setting ρj,l · ρi,j = 0, but it

turns out this is inconsistent with CPA−. Instead, we set (in this case)

∂ρi,l = ρj,l · ρi,j .

Then it follows that ∂2{a} = 0. Thus, we were forced to introduce a differential on our
algebra A.

Note that, in our example, j ∈ S({a}). In general, we define

∂(ρS,i,l) =
∑

j∈S
i<j<l

ρS,j,l · ρi,j .

This takes care of the example discussed above. The Leibniz rule extends ∂ to all of A.
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Part (e) is the most complicated. We will consider ∂2{b, e}. We compute

∂{b, e} = {a, f} + ρj,l{c, e} + ρi,l{d, e}

∂{a, f} = ρj,m{c, f} + ρi,m{d, f} + ρj,l{a, g} + ρi,l{a, h}.

∂ (ρj,l{c, e}) = ρj,l{a, g} + ρj,m{c, f} + ρj,l · ρi,j{d, e}

∂ (ρi,l{d, e}) = ρj,l · ρi,j{d, e} + ρi,l{a, h} + ρi,m{d, f} + ρi,l · ρj,m{d, g}.

Most of the terms in ∂2{b, e} cancel, but the term ρi,l ·ρj,m{d, g} does not. The offending
domain is shaded.

To resolve this difficulty, we impose the relation ρi,l ·ρj,m = 0 whenever i < j < l < m.

These are essentially all of the cases to check for CPD−; we will verify this more
carefully in Section 6.

Finally, consider the module CPA−(HA). One must check that the relations we im-
posed on A are compatible with the action of A on CPA−(HA); roughly, this follows by
rotating the pictures from Figure 5 by 180 degrees. We will discuss this more thoroughly
in Section 7.

These are the only relations we will need to impose on the algebra A. It turns out—we
will see this next—that this algebra has a clean description in terms of strand diagrams.

5. The algebra associated to a slicing

Fix integers N + 1 and k, representing the height and width respectively of a partial
planar grid diagram HA. We will define an algebra AN,k. We indicated, in a somewhat
roundabout manner, generators and relations for AN,k in Section 4. We start by giving
that definition in a more orderly manner and then move on to a description in terms of
strand diagrams.

The algebra AN,k is free as an A-module. For each k-element subset S of {0, . . . , N}
there is a primitive idempotent IS , so that

IS · IT =

{
IS if S = T ,

0 otherwise.

The algebra AN,k is generated as an A-algebra by a set of elements ρS,i,j (together
with the idempotents). Here, 0 ≤ i < j ≤ N and S is a k-element subset of {0, . . . , N}
such that i ∈ S and j /∈ S. The relations with the idempotents are as follows:

IT · ρS,i,j =

{
ρS,i,j if S = T

0 otherwise

ρS,i,j · IT =

{
ρS,i,j if T = (S \ i) ∪ j

0 otherwise.
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Figure 6. The product on A4,3. Two examples of upward-veering
strand diagrams on 3 strands and 5 positions are shown left and center,
and their product on the right.

Set ρi,j =
∑

S ρS,i,j , so ρS,i,j = ISρi,j . The relations we impose on AN,k are:

ρi,j · ρl,m = ρl,m · ρi,j for j < l or i < l < m < j (5.1)

ρi,j · ρl,m = 0 for i < l < j < m (5.2)

ρS,i,j · ρj,l = ρS,i,l for j /∈ S. (5.3)

We also define a differential on AN,k by setting

∂(ρS,i,j) =
∑

l∈S
i<l<j

ρl,j · ρi,l

and extending by the Leibniz rule.
Let IN,k denote the subalgebra of AN,k generated by the idempotents.
We will check that ∂2 = 0 and that ∂ has a consistent extension to all of AN,k, but

first we reinterpret this algebra graphically, and introduce a grading.

Let kI =
∐k

i=1[0, 1], ∂−kI =
∐k

i=1{0} and ∂+kI =
∐k

i=1{1}. By an upward-veering
strand diagram on k strands and N + 1 positions we mean a class [ρ] of smooth maps

ρ : (kI, ∂−kI, ∂+kI) → ([0, 1] × [0, N ], {0} × {0, . . . , N}, {1} × {0, . . . , N})

such that ρ′(t) ≥ 0 for all t ∈ kI, and such that the restrictions ρ|∂−kI and ρ|∂+kI

are injective, modulo homotopy and reordering of the strands. (See Figure 6 for an
illustration.) Let B(N, k) denote the set of upward-veering strand diagrams on k strands
and N + 1 positions.

Given an element [ρ] ∈ B(N, k), let cr([ρ]) denote the minimum number of crossings
(double points) of any representative ρ of [ρ].

If [ρ1], [ρ2] ∈ B(N, k) are such that ∂+[ρ1] = ∂−[ρ2] then we can concatenate ρ1 and ρ2

to obtain a new upward-veering strand diagram ρ1ρ2. Note that cr([ρ1ρ2]) ≤ cr([ρ1]) +

cr([ρ2]). Let ÃN,k denote the free A-module on B(N, k), and extend the concatenation

operation to a product on ÃN,k by setting

[ρ1] · [ρ2] =

{
[ρ1ρ2] if ∂+[ρ1] = ∂−[ρ2] and cr([ρ1ρ2]) = cr([ρ1]) + cr([ρ2])

0 otherwise.
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Figure 7. The differential on A5,3. Note that the term on the far
right is not included in the differential of the term on the left because of
the condition on the number of crossings cr.

This operation is obviously associative. The idempotents of ÃN,k are braids consisting
of k horizontal strands, and as such are in bijection with the set of k-element subsets of
{1, . . . , N}.

We define a differential ∂ on ÃN,k. Given [ρ] ∈ B(N, k), with representative ρ, let
smooth(ρ) denote the multiset of strand diagrams obtained by smoothing a single crossing
in ρ. Then define

∂[ρ] =
∑

ρ′∈smooth(ρ)
cr([ρ′])=cr([ρ])−1

[ρ′].

See Figure 7.

Lemma 5.4. The algebra AN,k is isomorphic to the algebra ÃN,k, via an isomorphism
identifying the differentials.

Proof. This is easy to check; see Figure 8 for a convincing illustration that the relations
agree. That the differentials agree is similarly straightforward. �

Provisionally, we define a grading on AN,k by setting gr([ρ]) = cr([ρ]).

Proposition 5.5. The algebra AN,k is a differential graded algebra. That is:

(1) The differential satisfies ∂2 = 0.
(2) The differential satisfies the Leibniz rule ∂(ab) = (∂a)b + a(∂b).
(3) Multiplication has degree 0.
(4) The differential has degree −1.

Proof. All four parts are obvious from the description in terms of strand diagrams. �

Remark 5.6. We have given two different definitions of AN,k. We could give a third, closely
related to permutations: the algebra is generated over A by bijective maps f : S → T
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Figure 8. The relations on A4,2. Parts (a) and (b) correspond to re-
lation (5.1). Part (c) corresponds to relation (5.2). Part (d) corresponds
to relation (5.3).

between k-element subsets of {0, . . . , N}, such that for all i ∈ S, f(i) ≥ i. The function
cr is then the number of inversions of the map (i.e., the number of pairs of integers i < j
for which f(i) > f(j)), and the multiplication is composition if it is defined and preserves
cr and zero otherwise. See [7, Section 3.1.1] for further discussion.

The homological (Maslov) grading we want is not the same as gr. In fact, both the
Maslov and Alexander gradings on AN,k depend not just on N and k but also on which
rows contain X’s and O’s to the left of Z.

More precisely, fix k-element subsets LX and LO of {1/2, . . . , N − 1/2}, which are the
y-coordinates of the Xi’s and Oi’s contained in HA (including Xk). Given an algebra
element a, viewed as a strand diagram, let LX(a) denote the intersection number of a
with the lines y = ℓ for ℓ ∈ LX . (Equivalently, define LX(ρi,j) = #{ℓ ∈ LX | i < ℓ < j}
and extend to all of AN,k.) Define LO(a) similarly.

For a ∈ AN,k, define gradings A and µ by

A(a) = LX(a) − LO(a)

µ(a) = cr(a) − 2LO(a).

It is clear that A is preserved by multiplication and the differential, and that multiplication
preserves µ while the differential drops µ by 1.

6. The Type D module

Fix a partial planar grid diagram HD of height N + 1 and width N + 1 − k. We will
associate to HD a differential AN,k-module.
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Figure 9. An element (shaded) of Half(ρi,j ;x,y). In fact, the region
pictured lies in Half◦(ρi,j ;x,y). It is also permitted for there to be some
Oi or Xi in the domain (though in the latter case we will not, in fact,
count the domain for the theory under discussion).

We define a left action of the idempotents IN,k on A〈S(HD)〉, the free A-module
generated by the generators in HD (see Section 3). Recall that a generator xD ∈ S(HD)
corresponds to an injection σx : {k, . . . , N + 1} → {0, . . . , N}. So, set

ISxD =

{
xD if S ∩ Im(σxD ) = ∅

0 otherwise.

As an AN,k-module, let

CPD−(HD) = AN,k ⊗IN,k
A〈S(HD)〉.

That is, the module CPD−(HD) is a direct sum of elementary AN,k-modules, one for
each generator in S(HD).

We next define the differential on CPD−(HD). For generators xD and yD, define
Rect◦(xD,yD) exactly as in Section 2. Given generators xD, yD and a segment ρi,j in
Z, we define a set Half(ρi,j ;x,y), as follows. Define Half(ρi,j ;x,y) to be empty unless
xi = yi for all but one i. If xi = yi for i 6= j and the y-coordinate of xj is (strictly) greater
than the y-coordinate of yj , then let Half(ρi,j ;x,y) be the singleton set containing the
rectangle (or “half-strip”) H with upper right corner xj , and lower right corner yj , and
left edge along the interface Z, where it is the segment from y = i to y = j. See Figure 9.
Call a half strip H ∈ Half(ρi,j ;x

D,yD) empty if the interior of H is disjoint from xD

(or equivalently from yD). Let Half◦(ρi,j ;x
D,yD) denote the set of empty half strips in

Half(ρi,j ;x
D,yD); this set has at most one element.

Now, for xD a generator, define

∂xD =
∑

yD∈S(HD)

∑

R∈Rect◦(xD,yD)
X(R)=0

U(R) · y +
∑

yD

∑

ρi,j

∑

H∈Half◦(ρi,j ;x
D,yD)

X(R)=0

U(H) · ρi,jy.

We extend the definition via the Leibniz rule to all of CPD−(HD).

Proposition 6.1. The module (CPD−, ∂) is a differential module. That is, ∂2 = 0.
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Proof. Since

∂2(awD) = ∂
(
(∂a)wD + a(∂wD)

)

=
(
∂2a
)
wD + 2(∂a)(∂wD) + a

(
∂2wD

)

= a
(
∂2wD

)
,

it suffices to show that the coefficient of yD in ∂2wD is zero for any wD,yD ∈ S(HD).
The remainder of the proof is similar to the combinatorial proof in the closed case

[9, Proposition 2.8]. Let awD,xD denote the coefficient of xD in ∂wD. Then the coefficient

of yD in ∂2wD is (∑

xD

awD,xD · axD,yD

)
+ ∂awD,yD . (6.2)

The first term in Formula (6.2) is a sum of terms coming from pairs (A,B) where one
of the following cases holds.

(1) A ∈ Rect◦(wD,xD) and B ∈ Rect◦(xD,yD) (for some xD). These contributions
cancel in pairs exactly as in [9, Proposition 2.8]; see Figure 2.

(2) A ∈ Rect◦(wD,xD) and B ∈ Half◦(ρi,j ;x
D,yD) (for some xD and ρi,j). There

are several cases here, the most interesting of which is illustrated in Figure 5(c).
In this case, the relation ρS,i,j · ρj,m = ρS,i,m implies this term cancels with a
pair of half strips (A′, B′) obtained by cutting the domain horizontally instead of
vertically.

(3) A ∈ Half◦(ρi,j ;w
D,xD) and B ∈ Half◦(ρl,m;xD,yD) (for some xD, ρi,j , and

ρl,m). Again, there are several cases. The two half-strips may be disjoint
(Figure 5(a)), or they may form a sideways “T” (Figure 5(b)); in these two
cases, relation (5.1) implies the contributions from taking the two strips in the
two different orders cancel. The two half-strips may abut top to bottom, in an
“L”-shape (Figure 5(c)); this cancels with one of the cases from Item (2).

Another possibility is that the upper right corner of B is the lower right corner
of A, as in Figure 5(d). This configuration contributes a coefficient of ρj,l · ρi,j

(times some U -power). There is also a half-strip, A∪B, which contributes ρi,l to
∂w; since ∂ρi,l = ρj,l · ρi,j in this case, these terms cancel.

Finally, the half strips may overlap as in Figure 5(e). But in this case the
coefficient contributed is ρi,l · ρj,m which is 0.

Note that all terms in ∂awD,yD cancelled against terms in Part (3). This completes
the proof. �

Finally, we turn to the gradings on CPD−(HD). Fix any planar grid diagram
H = (R2, X, O) such that HD = (HD, XD, OD) can be obtained by cutting H. Then,
for a generator xD ∈ S(HD), there are numbers I(X,xD) and I(O,xD), as in Section 2.
These numbers obviously do not depend on the choice of H. Further, fix any generator
x ∈ S(H) extending xD. Then we have a number I(x,xD), which again does not depend
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on the choice of H or x. Now, define the gradings of xD by

A(xD) = I(X,xD) − I(O,xD)

µ(xD) = I(x,xD) − 2I(O,xD).

Extend these definitions to all of CPD−(HD) by setting A(axD) = A(a) + A(xD) and
µ(axD) = µ(a) + µ(xD) for a ∈ AN,k.

Proposition 6.3. The gradings A and µ make CPD−(HD) into a graded module over
AN,k. The differential ∂ on CPD−(HD) drops µ by 1 while preserving A.

(When assigning gradings to the algebra, we let LX denote the set of i − 1/2 which
are not y-coordinates of points in XD, and similarly for LO.)

Proof. The first statement is trivial. To verify that the differential drops µ by 1, write
x = (xA,xD). Suppose that (

∏
ℓ Unℓ

ℓ ) ρi,j · y
D occurs in ∂xD. Then

I(x,xD) − I(y,yD) = 1 + #{(r, s) ∈ xA | i < s < j}.

This is exactly 1 + cr(ρS,i,j), where S = {0, . . . , N} \ Im(σxD ). Also,

I(O,xD) − I(O,yD) =

(∑

ℓ

nℓ

)
+ LO(ρi,j).

This implies that the differential decreases µ by 1, as desired. That the differential
preserves A is similar but easier. �

7. The Type A module

The module CPA− is much smaller than CPD−. Fix a partial planar grid diagram
HA with width k and height N + 1. The module CPA−(HA) is freely generated over A

by S(HA). There is a differential ∂ on CPA−(HA) defined by

∂xA =
∑

yA∈S(HA)

∑

R∈Rect◦(xA,yA)
X(R)=0

U(R) · yA.

It remains to define an action of AN,k on CPA−(HA).
Given a generator xA ∈ S(HA), let σxA denote the corresponding map {0, . . . , k − 1}

→ {0, . . . , N}. We define an action of the idempotents IN,k by

xAIS =

{
xA if S = Im(σxA)

0 otherwise.

This is, in some sense, exactly the opposite of the action of the idempotents on CPD−.
Given generators xA and yA in S(HA) and a generator ρi,j of AN,k (which we view

as a chord in Z from y = i to y = j) define Half(x,y; ρi,j) to be empty unless xk = yk

for all but one k, and in this case let it be the singleton set containing the rectangle
(or “half-strip”) H with lower left corner xk and upper left corner yk, and right edge
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Figure 10. An element of Half(x,y; ρi,j). The definition is essentially

the same as the definition for CPD−, only rotated by 180 degrees.

ρi,j if such a rectangle exists, and empty otherwise. See Figure 10. Call a half strip
H ∈ Half(xA,yA; ρi,j) empty if the interior of H is disjoint from xA. Let Half◦(xA,yA; ρi,j)
denote the set of empty half strips in Half(xA,yA; ρi,j).

We define an action by the generators ρi,j of AN,k by

xAρi,j =
∑

y
A∈S(Σ)

H∈Half◦(xA,yA;ρi,j)
X(H)=0

U(H) · yA.

(The sum contains at most one term.)

Proposition 7.1. The module CPA−(HA) is a differential AN,k-module. That is:

(1) The action of the ρi,j defined above respects the relations in AN,k.
(2) The action satisfies the Leibniz rule.
(3) The differential ∂ satisfies ∂2 = 0.

Proof. (The reader may wish to compare this with the proof of Proposition 6.1: the
pictures are almost the same, but their interpretations are different.)

That the AN,k-action respects the three relations (5.1), (5.2) and (5.3) follow from the
cases illustrated in Figure 11. In parts (a) and (b), we have

({a, c}ρi,j) ρl,m = ({a, c}ρl,m) ρi,j = {b, d}.

so relation (5.1) is respected. (We suppress the U -powers, but since these depend only
on the domains they, too, agree.)

In part (c) of Figure 11,

({a}ρi,j)ρj,l = {b}ρj,l = {c} = {a}ρi,l,

so relation (5.2) is respected.
In part (d) of Figure 11 we have

({a, f}ρi,l) ρj,m = {c, f}ρj,m = 0

since the corresponding half-strip is not empty. So, relation (5.3) is respected. (This is
only one of the two pictures we need to check in this case, but the other is similar.)
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Figure 11. The AN,k-action on CPA− respects the relations on
the algebra. Parts (a) and (b) correspond to relation (5.1). Part (c)
corresponds to relation (5.2). Part (d) corresponds to relation (5.3).

Figure 12. The Leibniz rule for CPA−. The domain shown can be
decomposed in two ways: as a rectangle followed by a half-strip, or as
two half strips. These correspond to (∂{b, d}) ρi,l and {b, d} (∂ρi,l) re-
spectively.

This proves Part (1).
Part (2) follows from Figure 12. More precisely, it suffices to show that for any i, j,

∂
(
xAρi,j

)
=
(
∂xA

)
ρi,j + xA (∂ρi,j) .

Both ∂
(
xAρi,j

)
and

(
∂xA

)
ρi,j correspond to a domain which is a union of a rectangle

and a half-strip. The most interesting case is when these abut to form an “L”-shape, as
in Figure 12. There, for xA = {b, d} we have

∂{b, d} = {a, e}

{a, e}ρi,l = {c, e}

{b, d}ρj,lρi,j = {c, e}

{b, d}ρi,l = 0,

so
∂ ({b, d}ρi,l) = 0 = (∂{b, d}) ρi,l + {b, d} (∂ρi,l) .

(The other interesting but similar case is obtained by flipping Figure 12 vertically.) This
proves Part 2.
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Part (3) follows from the same argument as in the closed case [9, Proposition 2.8]; see
also Figure 2. �

Finally, we turn to the gradings on CPA−(HA). Define

A(xA) = I(XA,xA) − I(OA,xA)

µ(xD) = I(xA,xA) − 2I(OA,xA).

Proposition 7.2. These gradings make CPA−(HA) into a graded AN,k-module. The dif-

ferential on CPA−(HA) preserves the Alexander grading A and drops the Maslov grading
µ by 1.

(When assigning gradings to the algebra, we let LX denote the set of i − 1/2 which
are y-coordinates of points in XA, and similarly for LO.)

Proof. First we check that multiplication preserves the A grading. Suppose that
xAρi,j = (

∏
ℓ Unℓ

ℓ )yA. Then

I(XA,xA) = I(XA,yA) − LX(ρi,j)

I(OA,xA) = I(OA,yA) − LO(ρi,j) +
∑

ℓ

nℓ.

The result follows.
That multiplication preserves µ is similar; see also the proof of Proposition 6.3 That

the differential preserves A and drops µ by 1 is straightforward. �

Remark 7.3. The definition of CPA− is somewhat different in spirit from the definition

of ĈFA for bordered three-manifolds in [7, Section 7]: there the product xAa is defined
directly for any algebra element a. In our setting, we could do this by counting more
complicated domains than rectangles.

8. The pairing theorem

Theorem 2. Let H be a planar grid diagram, decomposed as HA ∪Z HD, where HA

(respectively HD) is a partial planar grid diagram with width k (respectively N + 1 − k)
and height N + 1. Then

CP−(H) ∼= CPA−(HA) ⊗AN,k
CPD−(HD),

as (Z ⊕ Z)-graded chain complexes over A.

Proof. There is an obvious identification between the generators of CP−(H) and the
generators of CPA−(HA) ⊗AN,k

CPD−(HD). It follows from their definitions that this
identification respects the A and µ gradings.

The rest of the proof is essentially trivial, so we write it with formulas to make it seem
complicated. Given a generator x of CP−(H), we split ∂x into three pieces, according to
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whether the domain rectangle is entirely to the left of the dividing line {x = k − 1/4},
crosses the dividing line, or is entirely to the right of the dividing line:

∂x = ∂Lx + ∂Mx + ∂Rx.

Then if x is identified with xA ⊗ xD, we have

∂(xA ⊗ xD) = (∂xA) ⊗ xD + xA ⊗ (∂xD)

= ∂Lx + ∂Rx +
∑

yD∈S(HD)

∑

H∈Half◦(ρi,j ;x
D,yD)

X(H)=0

U(H)(xA ⊗ ρi,jy
D)

= ∂Lx + ∂Rx +
∑

yD∈S(HD)

∑

H∈Half◦(ρi,j ;x
D,yD)

X(H)=0

U(H)(xAρi,j ⊗ yD)

= ∂Lx + ∂Rx

+
∑

y
D∈S(HD)

y
A∈S(HA)

ρi,j

∑

H∈Half◦(ρi,j ;x
D,yD)

X(H)=0

∑

H′∈Half◦(xA,yA;ρi,j)

X(H′)=0

U(H ′ ∪ H)(yA ⊗ yD)

= ∂Lx + ∂Rx + ∂Mx

= ∂x,

as desired. �

Remark 8.1. More useful is the fact that CP−(H) is quasi-isomorphic to the derived
tensor product CPA−(HA) ⊗̃AN,k

CPD−(HD). For instance, this allows one to simplify

the complexes CPA− and CPD− more dramatically before taking the tensor product. In
fact, the AN,k-module CPD−(HD) is projective (hence flat), as one can see by imitating
an argument from Bernstein and Lunts [1, Proposition 10.12.2.6]. It follows that the
derived tensor product agrees with the ordinary one.

9. Bimodules

At this point we have encountered left and right modules over AN,k. We will now see
that bimodules also have several important roles to play. (The material in this section is
analogous to material in [6].)

9.1. Freezing

We have studied how to take a planar grid diagram and make a single vertical cut. In
the spirit of factoring a braid into generators, however, we might want to make several
different vertical cuts. In this section we will see that the correct objects to assign to
slices in the middle are (AN,k,AN,l)-bimodules.

That is, consider the result of slicing a planar grid diagram H along the lines
Z1 = {x = k − 1/4} and Z2 = {x = l − 1/4} (with l > k). The result is two par-
tial planar grid diagrams HA = H ∩ {x < k − 1/4} and HD = H ∩ {x > l − 1/4}, and a

112



Slicing planar grid diagrams

middle partial planar grid diagram HDA = H∩{k−1/4 < x < l−1/4}. We will associate
an (AN,k,AN,l)-bimodule CPDA−(HDA) to HDA.

A generator for HDA is an (l−k)-tuple of points x = {xi}
l−1
i=k; a generator x corresponds

to an injection σx : {k, . . . , l−1} → {1, . . . , N}. (For consistency with earlier notation, we
should really write x as xDA, but the notation becomes too cumbersome.) Let S(HDA)
denote the set of generators for HDA. Call a generator x compatible with an idempotent
IS ∈ AN,k if Im(σx) ∩ S = ∅. As a left module, CPDA−(HDA) is a direct sum of
elementary modules,

CPDA−(HDA) =
⊕

x∈S(HDA)
S compatible with x

AN,kIS .

We will write the generator of the summand AN,kIS coming from x as ISx. Note that,

unlike for CPD− or CPA−, the generator x does not determine the idempotent S.
We next define a differential on CPDA−(HDA). Given generators x,y ∈ S(HDA) such

that xn = yn for n 6= m (for some m), and i < j ∈ {0, . . . , N}, define Half(ρi,j ;x,y) to
be the set of rectangles with upper right corner at xm, lower right corner at ym and left
edge the segment ρi,j in Z1 from (k − 1/4, i) to (k − 1/4, j). Define Half◦(ρi,j ;x,y) to be
the subset of Half(ρi,j ;x,y) consisting of empty half-strips, i.e., half strips not containing
any element of x in their interiors. Then set

∂(ISx) =
∑

y∈S(HDA)

∑

R∈Rect◦(x,y)
X(R)=0

U(R) · ISy +
∑

y∈S(HDA)
i<j∈{0,...,N}

∑

H∈Half◦(ρi,j ;x,y)
X(H)=0

U(H) · ISρi,jy.

Here, the notation ISρi,jy, though suggestive, should be explained. If i ∈ S and j /∈ S
then ISρi,jy denotes ρi,jIT , where T = (S \ i) ∪ j, if T is compatible with y. Otherwise
(i.e., if i /∈ S, j ∈ S, or T is not compatible with y) we declare ISρi,jy to be 0.

Finally, we define the right module structure on CPDA−(HDA). Given a primitive
idempotent IT ∈ IN,l, define

(ISx)IT =

{
ISx if (S ∪ Im(σx)) ∩ T = ∅

0 otherwise.

Given generators x,y ∈ S(HDA) such that xℓ = yℓ for ℓ 6= m (for some m), and
i < j ∈ {0, . . . , N}, define Half(x,y; ρi,j) to be the set of rectangles with lower left corner
at xm, upper left corner at ym and right edge the segment ρi,j in Z2 from (l − 1/4, i) to
(l− 1/4, j). Define Half◦(x,y; ρi,j) to be the subset of Half(x,y; ρi,j) consisting of empty
half-strips, i.e., half strips not containing any element of x in their interiors.

Given a chord ρi,j in Z2 from (l − 1/4, i) to (l − 1/4, j), define Strip(ρi,j) to be the
horizontal strip with right edge ρi,j ⊂ Z2 and left edge ρi,j ⊂ Z1. Given ρi,j and a
generator x ∈ S(HDA), define Strip◦(x; ρi,j) to be the empty set if Strip(ρi,j) contains a
point in x (even along its boundary) and the singleton set Strip(ρi,j) if Strip(ρi,j) does
not contain a point in x.
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At last, define

(ISx)ρi,j =
∑

E∈Strip◦(x,ρi,j)
X(E)=0

U(E) · ISρi,jx +
∑

y∈S(HDA)

∑

H∈Half◦(x,y;ρi,j)
X(H)=0

U(H) · ISy.

These definitions are, in fact, compatible:

Proposition 9.1. The module CPDA−(HDA) is a differential (AN,k,AN,l)-bimodule.

We leave the proof to the interested reader.
As on CPD−, the grading of a generator ISx of CPDA−(HDA) is given by

A(ISx) = I(X,x) − I(O,x)

µ(ISx) = I(x̄,x) − 2I(O,x),

where H = (R2, X, O) is any planar diagram completing HDA, and x̄ is a generator in
S(H) completing x and compatible with the idempotent IS in the obvious sense.

Finally, the module CPDA−(HDA) satisfies a pairing theorem:

Proposition 9.2. With notation as above,

CPA−(HA ∪Z1
HDA) = CPA−(HA) ⊗AN,k

CPDA−(HDA)

CPD−(HDA ∪Z2
HD) = CPDA−(HDA) ⊗AN,l

CPD−(HD)

CP−(H) = CPA−(HA) ⊗AN,k
CPDA−(HDA) ⊗AN,l

CPD−(HD).

The proof is obvious. The analogous result for cutting along more than two vertical
lines is also true.

Remark 9.3. The notation CPDA− denotes that the module is “Type D” from the left
and “Type A” from the right.

9.2. Type A to Type D

The reader might wonder about the relation between CPA− and CPD−. One might
expect that they are, in some appropriate sense, dual to each other. In the case of
bordered Heegaard Floer homology this is true. In this section, we hint at that story
by reconstructing CPD− from CPA−. In Section 9.3 we will discuss going the other
direction. We will suppress both the gradings and the U -variables: our treatment of both
has been too näıve to extend properly to the present discussion.

Let k′ = N + 1 − k. We construct a (AN,k,AN,k′)-bimodule CPDD−
N,k so that

CPD−(HD) = CPA−(HD)⊗AN,k
CPDD−

N,k. Actually, unlike a traditional bimodule with
a left action and a right action, we will construct the AN,k- and AN,k′-actions as a pair

of commuting left actions, so the module CPA−(HD) ⊗AN,k
CPDD−

N,k comes equipped
with a left action rather than a right action.

The module CPDD−
N,k is easy to describe. Note that there is an obvious isomorphism

IN,k → IN,k′ , taking IS to I{0,...,N}\S . This makes AN,k′ into a right IN,k-module. The

114



Slicing planar grid diagrams

Figure 13. A graphical representation of CPDD−
N,k. The case

shown is N = 4, k = 2. The element IS , for S = {1, 3}, is shown
on the left. On the right is the differential of IS ⊗ 1. This graphical rep-
resentation treats CPDD−

N,k as a traditional (left,right) bimodule, rather

than a (left,left) bimodule; this is the reason that the strands on the right
are downward-veering.

module CPDD−
N,k is just

AN,k′ ⊗IN,k
AN,k′

where the tensor product identifies the right actions of IN,k on AN,k′ and AN,k′ . This

module, then, is equipped with two left actions. The differential on CPDD−
N,k is not the

one inherited from the tensor product. Rather, for S a k-element subset of {0, . . . , N} we
define

∂(IS ⊗ 1) =
∑

i∈S
j>i
j /∈S

ρk
i,jρ

k′

i,j(IT ⊗ 1)

where ρk
i,j denotes the element ρi,j of AN,k, ρk′

i,j denotes the element ρi,j of AN,k′ , and

T = (S \ i) ∪ j. We extend the differential to all of CPDD−
N,k by the Leibniz rule. An

example is illustrated in Figure 13.

Lemma 9.4. The module CPDD−
N,k is a differential (AN,k,AN,k′)-bimodule.

Proof. This is immediate from the definitions. �

One can view the module CPDD−
N,k as the (Type D, Type D) module associated to a

middle partial planar grid diagram with zero β-lines (i.e., in the notation of Section 9.1,
k = l). The generator corresponds to the empty set in α∩β. The differential comes from
the strips Strip(ρi,j) (as in Section 9.1).

As promised, we have the following pairing theorem:

Proposition 9.5. Fix a partial Heegaard diagram HD. Then

CPD−(HD) = CPA−(HD) ⊗AN,k
CPDD−

N,k.

Proof. The tensor product CPA−(HD) ⊗AN,k
CPDD−

N,k is a direct sum of elementary

modules xA ⊗ AN,k′IS , one for each generator xA of CPA−(HD), where S is
{0, . . . , N} \ Im(σxA). The part of the differential on the tensor product coming from the
differential on CPA−(HD) counts empty rectangles. The part of the differential coming
from the differential on CPDD−

N,k counts empty half strips, exactly as on CPD−(HD). �
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9.3. Remarks on Type D to Type A

Turning the module CPD− into CPA− is more subtle than turning CPA− into CPD−.
It is clearly not possible to find a module CPAA−

N,k so that CPA− is exactly equal to

CPAA−
N,k ⊗AN,k′

CPD−: the ranks of these modules over A prevent this.
There are two approaches one might take. One approach is to use properties of

CPDD−
N,k to prove that it induces an equivalence of categories Db(AN,k − Mod) →

Db(AN,k′ − Mod), and then construct a bimodule giving the inverse equivalence of cate-
gories.

Another approach is to define CPAA−
N,k as an A∞-bimodule. Using the appropriate

model for the A∞-tensor product (see, e.g., [7, Section 2]), it is then possible for CPA−

to be exactly CPAA−
N,k ⊗AN,k′

CPD−. The generators and first few A∞-operations for

this CPAA−
N,k are easy to guess. As an A-module, CPAA−

N,k would be just IN,k
∼= IN,k′ .

The first few A∞-relations would be

m1(IS) = 0

m2(a, IS) = 0

m2(IS , a) = 0

m3(ρi,j , IS , ρi,j) =

{
IT if i ∈ S, j /∈ S, and where T = (S \ i) ∪ j

0 otherwise.

(Even though CPAA−
N,k should really have two right actions, for clarity we have written

it with one right and one left action.)
Unfortunately, higher A∞-relations are harder to guess and, at least in the case of

bordered Heegaard Floer homology, depend on some choices. Fortunately, in the case of
bordered Heegaard Floer homology, these modules are induced by counts of holomorphic
curves, so we need not build them by hand; see [7]. (In particular, it turns out that the
choices are induced by a choice of almost complex structure.) The challenge in defining
CPAA−

N,k, then, becomes counting holomorphic curves.

10. How the real world is harder

In this section, we preview the difficulties involved in using the ideas from this paper
to define more useful invariants.

10.1. Complications for ĤF of 3-manifolds

As discussed in the introduction, applying the ideas of this paper to the case of the

Heegaard Floer group ĤF (Y ) gives an invariant of 3-manifolds with boundary; see [7].
The main complications are as follows.
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10.1.1. Heegaard diagrams.

Instead of working with grid diagrams, the invariant ĤF (Y 3) is defined by using a
“Heegaard diagram” for Y . One needs, then, an appropriate family of partial Heegaard
diagrams. Such a class, called either “Heegaard diagrams with boundary” or “bordered
Heegaard diagrams” was presented in [5]; see also [7, Section 4]. These diagrams are
induced by a self-indexing Morse function f on a three manifold with boundary (Y, ∂Y )
such that ∇f is tangent to ∂Y (and subject to a few more constraints). Bordered Heegaard
diagrams specify not just the three-manifold Y but also a parametrization of ∂Y ; this is
obviously needed for the pairing theorem to make sense.

One incidental effect is that the algebra AN,k needs to be modified somewhat. In the
planar setting, each α-line intersects the interface Z in a single point; in the bordered
case (or the toroidal case) this is not true. The solution in the bordered case is to work
with a subalgebra of AN,k which, roughly, remembers how the points α∩Z are paired-up.
(In the toroidal case described below, it is more convenient to remember only half of the
points and drop the requirement that strand diagrams be upward-veering.)

10.1.2. Holomorphic curves.

Like the closed Heegaard Floer invariant ĈF (Y ), the definitions of the bordered Hee-

gaard Floer invariants ĈFA(Y ) and ĈFD(Y ) involve counting holomorphic curves. The
analytic setup here is somewhat nonstandard, complicating matters.

Like ĈF (Y ), the techniques of Sarkar and Wang [12] allow one to compute ĈFA(Y ) and

ĈFD(Y ) combinatorially, by using a particular kind of diagram called a nice diagram.
Such diagrams also make the pairing theorem as trivial as it was in the planar case.
However, there is currently no way to prove invariance for even the closed invariant while
staying in the class of nice diagrams; also, working with a nice diagram seems to require
super-exponentially more generators in most cases.

10.1.3. A∞-structures and noncommutative gradings

For general Heegaard diagrams, associativity fails for ĈFA(Y ). Fortunately, associa-
tivity holds up to homotopy, and in fact one can organize the higher associators neatly
into the structure of an A∞-module. (In the case that the bordered Heegaard diagram is

nice, all higher associators vanish, and hence ĈFA(Y ) is an honest module.)
Another algebraic complication is the grading. For boundary of genus at least one,

the algebra A(F ) associated to a surface F is not Z-graded but rather is graded by a
certain noncommutative group G. (This grading intertwines the homological and spinc

gradings.) The modules associated to bordered 3-manifolds are graded by G-sets.

10.2. Complications for toroidal grid diagrams

One can also try to pursue an analogue of this theory for toroidal grid diagrams.
Slicing a toroidal grid diagram yields a representation of a tangle, so this can be viewed
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as a theory of tangles. There seem to be two main complications, the second more serious
than the first.

10.2.1. Boundary degenerations and matrix factorizations.

For planar grid diagrams, or for bordered Heegaard diagrams, there are no domains
with boundary contained entirely in the α-curves (or entirely in the β-curves). This
prevents certain degenerations of holomorphic curves (called “boundary degenerations”
in [10]). For toroidal grid diagrams, there are such degenerations. Their cancellation,
holomorphically [10] or combinatorially [9], is delicate, and not preserved by the slicing
operation. The result is that the invariants one must associate to partial toroidal grid
diagrams are not differential modules but instead matrix factorizations. (Matrix factor-
izations also arise in other knot homology theories; see, e.g., [4].) Equivalently, one can
deform a suitable version of the algebra AN,k to an A∞-algebra with a nontrivial µ0.

10.2.2. Derived equivalences.

In this paper, we have not talked at all about invariance, because the planar Floer
homology CP− is itself not an invariant. For the toroidal theory, a partial diagram of

height N and width k will result in a module over an algebra AX,O
N,k, a variant of AN,k.

One can have diagrams for a tangle with different heights and widths; the “invariants”
associated to them, then, are modules over different algebras. In order to even express
invariance, then, one would like derived equivalences

Db(AX,O
N,k − Mod) → Db(AX

′,O′

N ′,k′ − Mod)

between certain of these algebras. Moreover, these must be compatible with how stabi-
lization acts on the modules. We return to these issues in a future paper [6].
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