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Differential models for the Anderson dual to bordism
theories and invertible QFT’s, II

Mayuko Yamashita

Abstract. This is the second part of the work on differential models of the Anderson
duals to the stable tangential G-bordism theories IΩG, motivated by classifications

of invertible QFT’s. Using the model constructed in the first part [Journal of Gökova

Geometry Topology, 16, (2023), 1-64], in this paper we show that pushforwards in gen-
eralized differential cohomology theories induces transformations between differential

cohomology theories which refine the Anderson duals to multiplicative genera. This

gives us a unified understanding of an important class of elements in the Anderson
duals with physical origins.
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1. Introduction

This is the second part of the work on differential models of the Anderson duals to
the stable tangential G-bordism theories IΩG motivated by classifications of invertible
QFT’s. The generalized cohomology theory IΩG is conjectured by Freed and Hopkins
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[FH21, Conjecture 8.37] to classify deformation classes of possibly non-topological invert-
ible quantum field theories (QFT’s) on stable tangential G-manifolds. Motivated by this
conjecture, in the previous paper [YY21] by Yonekura and the author, we constructed

a model IΩGdR of IΩG and its differential extension ÎΩGdR by abstractizing properties of
partition functions for invertible QFT’s. This paper is devoted to their relations with
multiplicative genera. We show that pushforwards (also called integrations) in generalized
differential cohomology theories allow us to construct differential refinements of certain
cohomology transformations which arise from the Anderson dual to multiplicative genera
and the module structures of the Anderson duals. This gives us a unified understanding
of an important class of elements in the Anderson duals with physical origins. More-
over, having transformations in the differential level gives a more direct connection to
physical picture, since they can be regarded as transformations of QFTs without taking
deformation classes, recovering the information of partition functions.

First, we explain the motivations of the previous paper. As we recall in Section 2, the

differential group (ÎΩGdR)n(X) consists of pairs (ω, h), where ω ∈ Ωnclo(X;H•(MTG;R))
where n is the total degree, and h is a map which assigns R/Z-values to differential stable
tangential G-cycles of dimension (n− 1) over X, which satisfy a compatibility condition
with respect to bordisms. The physical interpretation is that h is the complex phase of
the partition function of an invertible QFT. For example, given a hermitian line bun-
dle with unitary connection over X, the pair of the first Chern form and the holonomy
function gives an element for G = SO and n = 2 (Subsection 3.4.1). Similarly, given a
hermitian vector bundle with unitary connection, we can construct even-degree elements
for G = Spinc using the reduced eta invariants of twisted Dirac operators (Subsection
3.4.3): this theory is related to anomaly of spinor field theory. Then, a natural mathe-
matical question arises: what are these elements mathematically? It is natural to expect
a topological characterization of these elements. Questions of this kind also appears in
[FH21, Conjecture 9.70] (also recalled in Conjecture 3.50 below). This paper is devoted
to this question. Actually, these examples are special cases of the general construction in
this paper which we now explain.

Now we explain the general settings. In this paper, the tangential structure groups
G = {Gd, sd, ρd}d∈Z≥0

(see Section 2) is assumed to be multiplicative, i.e., the correspond-
ing Madsen-Tillmann spectrum MTG is equipped with a structure of a ring spectrum.
Assume we are given a ring spectrum E with a homomorphism of ring spectra,

G : MTG→ E.

such G is also called a multiplicative genus, and examples include the usual orientation
τ : MTSO → HZ and the Atiyah-Bott-Shapiro orientations ABS: MTSpinc → K and
ABS: MTSpin→ KO.

On the topological level, a ring homomorphism G : MTG → E gives pushforwards
in E for proper G-oriented smooth maps. Pushforwards in differential cohomology, or
differential pushforwards, are certain differential refinements of topological pushforwards.

Basically, they consist of corresponding maps in Ê for each proper map with a “differential
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E-orientation”. The formulations depend on the context. To clarify this point, in this

paper we use the differential extension ÊHS of E constructed by Hopkins-Singer [HS05],
and use the formulation of differential pushforwards in that paper. Throughout this paper,
we assume that E is rationally even, i.e., E2k+1(pt) ⊗ R = 0 for any integer k. In this
case, by [Upm15] there exists a canonical multiplicative structure on the Hopkins-Singer’s

differential extension Ê∗HS(−; ιE) associated to a fundamental cycle ιE ∈ Z0(E;V •E). The
theory of differential pushforwards gets simple in this case. This point is explained in
Subsection 3.1 and Appendix A. Of course our result applies to any model of differential

extension Ê of E which is isomorphic to the Hopkins-Singer’s model. Practically, most
known examples of differential extensions are isomorphic to Hopkins-Singer’s model (see
Footnote 2). The holonomy functions are examples of differential pushforwards in the
case τ : MTSO→ HZ, and the reduced eta invariants are those for ABS: MTSpinc → K
by the result of Freed and Lott [FL10] and Klonoff [Klo08].

Let n be an integer such that E1−n(pt) ⊗ R = 0. As we show in Subsection 3.3, the
above data defines the following natural transformation,

ΦG : Ê∗HS(−; ιE)⊗ IEn(pt)→ (ÎΩGdR)∗+n(−), (1.1)

on Mfdop (Definition 3.36).
The main result of this paper is the following topological characterization of the trans-

formation (1.1).

Theorem 1.2 (=Theorem 3.26). In the above settings, let X be a manifold and k be an in-

teger. For ê ∈ ÊkHS(X; ιE) and β ∈ IEn(pt), the element I(ΦG(ê⊗β)) ∈ (IΩG)k+n(X) =
[X+ ∧MTG,Σk+nIZ] coincides with the following composition,

X+ ∧MTG
e∧G−−→ ΣkE ∧ E multi−−−→ ΣkE

β−→ Σk+nIZ. (1.3)

Here we denoted e := I(ê) ∈ Ek(X).

As we will see in Subsection 3.4, this result applies to the above mentioned examples
as follows.

Example 1.4 (Subsection 3.4.1). Set E = HZ with τ : MTSO → HZ. We have the
Anderson self-duality element γHZ ∈ IHZ0(pt). The transformation

Φτ (−⊗ γH) : Ĥ2(X;Z)→ (ÎΩSO
dR)2(X) (1.5)

sends the class of a hermitian line bundle with connection [L,∇] ∈ Ĥ2(X;Z) to the

element (c1(∇),Hol∇) ∈ (ÎΩSO
dR)2(X). Applying Theorem 1.2, we see that its deformation

class coincides with the following composition,

X+ ∧MTSO
c1(L)∧τ−−−−−→ Σ2HZ ∧HZ multi−−−→ Σ2HZ γH−−→ Σ2IZ.

Example 1.6 (Subsections 3.4.3 and 3.4.4). Set E = K with the Atiyah-Bott-Shapiro
orientations ABS: MTSpinc → K. We have the Anderson self-duality element γK ∈
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IK0(pt). The transformation

ΦABS(−⊗ γK) : K̂2k(X)→ ( ̂IΩSpinc

dR )2k(X). (1.7)

maps the class [W,hW ,∇W , 0] ∈ K̂0(X) ' K̂2k(X) of hermitian vector bundle with

unitary connection to the element
(
(Ch(∇W )⊗ Todd)|2k, η∇W

)
∈
(

̂IΩSpinc
)2k

(X). Ap-

plying Theorem 1.2, we see that its deformation class coincides with the following com-
position,

X+ ∧MTSpinc
[E]∧ABS−−−−−−→ K ∧K multi−−−→ K

Bott−−−→
'

Σ2kK
γK−−→ Σ2kIZ.

In Subsection 3.4.4, we explain that this transformation can be interpreted as taking
anomaly theories of complex spinor field theories.

The paper is organized as follows. In Section 2 we recall the definition of the differential
models in [YY21]. Section 3 is the main part of this paper. We construct the natural
transformation (1.1) and prove Theorem 1.2 in Subsection 3.3. We explain some examples,
as well as relation with anomalies, in Subsection 3.4. As we explain in Subsection 3.1,
there are certain subtleties regarding the formulations of differential pushforwards. In
Appendix A, we collect the necessary results concerning differential pushforwards for
submersions when E is rationally even.

1.1. Notations and conventions

• By manifolds, we mean smooth manifolds with corners. We use the conventions
explained in [YY21, Subection 2.3].
• The space of R-valued differential forms on a manifold X is denoted by Ω∗(X).
• We deal with differential forms with values in a graded real vector space V •. In

the notation Ωn(−;V •), n means the total degree. In the case if V • is infinite-
dimensional, we topologize it as the colimit of all its finite-dimensional subspaces
with the caonical topology, and set Ωn(X;V •) := C∞(X; (∧T ∗X ⊗R V

•)n). This
means that, any element in Ωn(X;V •) can locally be written as a finite sum∑
i ξi ⊗ φi with ξi ∈ Ωmi(X) and φi ∈ V n−mi for some mi for each i. The space

of closed forms are denoted by Ωnclo(−;V •).
• For a manifold X and a real vector space V , we denote by V the trivial bundle
V := X × V over X.
• For a topological space X, we denote by pX : X → pt the map to pt. We set
X+ := (X t {∗}, {∗}).
• For two topological spacesX and Y , we denote by prX : X×Y → X the projection

to X.
• We set I := [0, 1].
• For a real vector bundle V over a topological space, we denote its orientation

line bundle (rank-1 real vector bundle) by Ori(V ). For a manifold M , we set
Ori(M) := Ori(TM).
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• For a spectrum {En}n∈Z, we require the adjoints En → ΩEn+1 of the structure ho-
momorphisms are homeomorphisms. For a sequence of pointed spaces {E′n}n∈Z≥a
with maps ΣE′n → E′n+1, we define its spectrification LE′ := {(LE′)n}n∈Z to be
the spectrum given by

(LE′)n := lim−→
k

ΩkE′n+k.

• For a generalized cohomology theory E, we set V •E := E•(pt)⊗ R.
• The Chern-Dold homomorphism [Rud98, Chapter II, 7.13] for a generalized co-

homology theory E is denoted by

ch: E∗(−)→ H∗(−;V •E). (1.8)

• We use the axiomatic framework of generalized differential cohomology given in
[BS12] (also recalled in [YY21, Subsection 2.2]). We abuse the notations R, a and
I for the structure maps for general differential cohomology theories, following the
standard notations in those papers.

2. Preliminaries from [YY21]

In this section we recall necessary parts of the previous paper [YY21]. In [YY21],

we constructed a model ÎΩGdR of a differential extension of the Anderson dual to the
tangential G-bordism homology theory IΩG.

First we recall the definition of the Anderson duals to spectra (see [YY21, Section 2.1],
[HS05, Appendix B] and [FMS07, Appendix B]). The functor X 7→ Hom(π∗(X),R/Z) on
the stable homotopy category is represented by a spectrum denoted by I(R/Z). The An-
derson dual to the sphere spectrum, denoted by IZ, is defined as the homotopy fiber
of the morphism HR → I(R/Z) representing the transformation Hom(π∗(−),R) →
Hom(π∗(−),R/Z). For any spectra E, the Anderson dual to E, denoted by IE, is defined
to be the function spectrum from E to IZ, IE := F (E, IZ). This implies that we have
the following exact sequence for any spectra X.

· · · → Hom(En−1(X),R)
π−→ Hom(En−1(X),R/Z)→ IEn(X) (2.1)

→ Hom(En(X),R)
π−→ Hom(En(X),R/Z)→ · · · (exact).

In [YY21] and the current paper, we are particularly interested in the Anderson dual
to the G-bordism homology theory. Here, G = {Gd, sd, ρd}d∈Z≥0

is a sequence of compact
Lie groups equipped with homomorphisms sd : Gd → Gd+1 and ρd : Gd → O(d,R) for
each d, such that the following diagram commutes.

Gd
ρd //

sd

��

O(d,R)

��
Gd+1

ρd+1 // O(d+ 1,R)

.
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Here we use the inclusion O(d,R) ↪→ O(d+ 1,R) defined by

A 7→
[

1 0
0 A

]
throughout this paper. Given such G, the stable tangential G-bordism homology theory
assigns the stable tangential bordism group (ΩG)∗(−). It is represented by the Madsen-
Tillmann spectrum MTG, which is a variant of the Thom spectrum MG. For details see
for example [Fre19, Section 6.6]. In this paper we take MTG and MG to be a spectrum
as in [HS05, (4.60)]. The Anderson dual IΩG fits into the following exact sequence.

· · · → Hom(ΩGn−1(X),R)→ Hom(ΩGn−1(X),R/Z)→ (IΩG)n(X) (2.2)

→ Hom(ΩGn (X),R)→ Hom(ΩGn (X),R/Z)→ · · · (exact).

Now we proceed to recall the definition of ÎΩGdR. In [YY21], we defined the relative

groups ÎΩGdR(X,Y ). But since we only deal with the absolute case X = (X,∅) in this

paper, we concentrate on this case. To recall the definition of ÎΩGdR, we first recall the
differential stable G-structures on vector bundles.

Definition 2.3 (Differential stable G-structures on vector bundles, [YY21, Definition
3.1]). Let V be a real vector bundle of rank n over a manifold M .

(1) A representative of differential stable G-structure on V is a quadruple g̃ =
(d, P,∇, ψ), where d ≥ n is an integer, (P,∇) is a principal Gd-bundle with

connection over M and ψ : P ×ρd Rd ' Rd−n ⊕ V is an isomorphism of vector
bundles over M .

(2) We define the stabilization of such g̃ by g̃(1) := (d+ 1, P (1) := P ×sd Gd+1,∇(1),
ψ(1)), where ∇(1) and ψ(1) are naturally induced on P (1) from ∇ and ψ, respec-
tively.

(3) A differential stable G-structure g on V is a class of representatives g̃ under the
relation g̃ ∼stab g̃(1).

(4) Suppose we have two representatives of the forms g̃ = (d, P,∇, ψ) and g̃ =
(d, P,∇, ψ′), such that ψ and ψ′ are homotopic. In this case, the resulting differ-
ential stable G-structures g and g′ are called homotopic.

If we forget the information of the connection ∇, we get the corresponding notion of
(topological) differential stable G-structures. For a differential stable G-structure g, we
denote the underlying topological structure by gtop. Similar remarks apply to the various
definitions below.

We also recall the normal variant, which we use in Appendix A.

Definition 2.4 (Differential stable normal G-structures on vector bundles, [YY21, Defi-
nition 4.75]). Let V be a real vector bundle of rank n over a manifold M .

(1) A representative of differential stable normal G-structure on V is a quadruple
g̃⊥ = (d, P,∇, ψ), where d ≥ n is an integer, (P,∇) is a principal Gd−n-bundle
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with connection over M and ψ : (P ×ρd−n Rd−n)⊕ V ' Rd is an isomorphism of
vector bundles over M .

(2), (3) We define the stabilization of such g̃⊥ in the same way as Definition 2.3, and a
differential stable normal G-structure g⊥ on V is defined to be a class of repre-
sentatives under the stabilization relation.

(4) We define the homotopy relation between two such g⊥’s also in the same way.

A differential stable tangential G-structure on a manifold M is a differential stable
G-structure on TM . Given a manifold X, a differential stable tangential G-cycle of
dimension n over X is a triple (M, g, f), where M is an n-dimensional closed manifold,
g is a differential stable tangential G-structure on M and f ∈ C∞(M,X). Using these
cycles, we defined

• The abelian group CG∇n (X), consisting of the equivalence classes [M, g, f ] of differ-
ential stable tangential G-cycles of dimension n over X, with the equivalence rela-
tion generated by isomorphisms, opposite relation and homotopy relation [YY21,
Definition 3.5].

• The Picard groupoid hBordG∇n (X), whose objects are differential stable tangential
G-cycles (M, g, f) of dimension n over X, and morphisms are the bordism classes
[W, gW , fW ] of bordisms (W, gW , fW ) : (M−, g−, f−)→ (M+, g+, f+) [YY21, Def-
inition 3.8].

By the theorem of Pontryagin-Thom we have an equivalence of Picard groupoids [YY21,
Lemma 3.10],

hBordG∇n (X) ' π≤1(L(X+ ∧MTG)−n). (2.5)

Here the right hand side denotes the fundamental Picard groupoid.
Let RGd denote the Gd module with the underlying vector space R and the Gd-action

by det ◦ ρd : G→ {±1}. By the Thom isomorphism, we have

N•G := H•(MTG;R) ' lim←−
d

(Sym•/2g∗d ⊗R RGd)Gd ' H•(MG;R) =: N•G⊥ .

The fourth arrow in (2.2) gives the homomorphism

ch′ : (IΩG)∗(X)→ H∗(X;N•G) ' Hom(ΩG∗ (X),R). (2.6)

By [YY21, Proposition 4.9] we have a canonical homomorphism

q : V nIΩG
q−→ Nn

G. (2.7)

The map q is isomorphism if ΩGn (pt) is finitely generated for all n.
Let V∗ be any Z-graded vector space over R. Given a vector bundle V → M with a

differential stable G-structure g, we get a homomorphism of Z-graded real vector spaces
by the Chern-Weil construction [YY21, Definition 4.4 and Remark 4.10],

cwg : Ω∗(M ;H•(MTG;V∗)) = Ω∗ (M ;H•(MG;V∗))→ Ω∗(M ; Ori(V )⊗R V∗). (2.8)

71



M. Yamashita

Since the orientation bundle of a vector bundle and its normal bundle are canonically iden-
tified, for V →M equipped with a differential stable normal G-structure g⊥, we also get

cwg⊥ : Ω∗(M ;H•(MTG;V∗)) = Ω∗ (M ;H•(MG;V∗))→ Ω∗(M ; Ori(V )⊗R V∗). (2.9)

For ω ∈ Ωnclo(X;H•(MTG;V∗)) we get a homomorphism

cw(ω) : Hom
hBord

G∇
N−1(X)

((M−, g−, f−), (M+, g+, f+))→ Vn−N (2.10)

[W, gW , fW ] 7→
∫
W

cwgW ((fW )∗ω),

for each pair of objects (M±, g±, f±) in hBordG∇N−1(X). In the following definition, we use
(2.10) in the case V∗ = R and n = N .

Definition 2.11 ((ÎΩGdR)∗ and (IΩGdR)∗, [YY21, Definition 4.15]). Let X be a manifold
and n ∈ Z≥0.

(1) Define (ÎΩGdR)n(X) to be an abelian group consisting of pairs (ω, h), such that
(a) ω is a closed n-form1 ω ∈ Ωnclo(X;N•G).

(b) h is a group homomorphism h : CG∇n−1(X)→ R/Z.
(c) ω and h satisfy the following compatibility condition. Assume that we are

given two objects (M−, g−, f−) and (M+, g+, f+) in hBordG∇n−1(X) and a
morphism [W, gW , fW ] from the former to the latter. Then we have

h([M+, g+, f+])− h([M−, g−, f−]) = cw(ω)([W, gW , fW ]) (mod Z).

Abelian group structure on (ÎΩGdR)n(X) is defined in the obvious way.
(2) We define a homomorphsim of abelian groups,

a : Ωn−1(X;N•G)/Im(d)→ (ÎΩGdR)n(X)

α 7→ (dα, cw(α)).

Here the homomorphism cw(α) : CG∇n−1(X)→ R/Z is defined by

cw(α)([M, g, f ]) :=

∫
M

cwg(f
∗α) (mod Z).

We set

(IΩGdR)n(X) := (ÎΩGdR)n(X)/Im(a).

For n ∈ Z<0 we set (ÎΩGdR)n(X) = 0 and (IΩGdR)n(X) = 0.

We defined the structure homomorphisms R, a and I along with the S1-integration

map
∫

for ÎΩGdR. One of the main results of [YY21] is the following.

1Recall that n is the total degree.
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Theorem 2.12 ([YY21, Theorem 4.51]). We have a natural isomorphism of functors

Mfd→ AbZ,

(IΩGdR)∗ ' (IΩG)∗

Moreover, the functor ÎΩGdR, along with the structure maps introduced in [YY21], is a

differential extension with S1-integration of the pair
(
(IΩG)∗, ch′

)
, where ch′ is defined

in (2.6).

3. Pushforwards in differential cohomologies and the Anderson
duality

This is the main section of this paper. The main part is Subsection 3.3, where we
construct the natural transformation (1.1) and prove Theorem 1.2. Subsections 3.1 and
3.2 are preparation for the construction and proof. We explain some examples, as well as
relations with anomaly, in Subsection 3.4.

3.1. Preliminary–Differential pushforwards in the Hopkins-Singer model

In this subsection, we briefly explain the differential extensions of generalized coho-
mology theories constructed by Hopkins-Singer and the differential pushforwards (called
integration in [HS05]) in that model. We explain it in more detail in Appendix A.

On the topological level, a ring homomorphism G : MTG → E gives pushforwards in
E for G-oriented proper smooth maps. For proper smooth maps p : N → X of relative
dimension r := dimN − dimX with (topological) stable relative tangential G-structures
gtop
p , we get the corresponding pushforward map,

(p, gtop
p )∗ : E∗(N)→ E∗−r(X). (3.1)

In particular in the case X = pt, for a closed manifold M of dimension n with a stable
tangential G-structure gtop ([YY21, Definition 3.2]), we get

(pM , g
top)∗ : E∗(M)→ E∗−n(pt).

There are notions of differential refinements of the pushforward maps in Ê. For example
see [HS05, Section 4.10], [BSSW09, Section 2] and [Bun13, Section 4.8 – 4.10]. Basically,

they consist of corresponding maps in Ê for each proper map with a “differential E-
orientation”. The formulations depend on the context. In this paper, we adopt the one
by Hopkins-Singer2.

Hopkins and Singer gave a model of differential extensions, which we denote by

Ê∗HS(−; ιE), for any spectrum E, in terms of differential function complexes. In gen-
eral we choose a Z-graded vector space V •, and a singular cocycle ιE ∈ Z0(E;V •) =

2In particular we use the differential extension ÊHS. Practically this is not restrictive. We are assuming

E is rationally even and multiplicative, so ÊHS is equipped with a canonical multiplicative structure by
[Upm15]. Thus, when the coefficients of E are countably generated, we can apply the uniqueness result

in [BS10, Theorem 1.7] to conclude that any other multiplicative differential extension (defined on the

category of all smooth manifolds) is isomorphic to ÊHS.
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lim←−n Z
n(En;V •). Then for each n and for each manifold X, we get a simplicial complex

called differential function complex,

(En; ιn)X = (E; ι)Xn ,

consisting of differential functions X × ∆• → (En; ιn). This complex has a filtration
filts(E; ι)Xn , s ∈ Z≥0. The differential cohomology group is defined as (it is denoted by
E(n)n(X; ι) in [HS05]),

ÊnHS(X; ι) := π0filt0(E; ι)Xn .

In particular this means that an element in ÊnHS(X; ι) is represented by a differential
function (c, h, ω) : X → (En; ιn), consisting of a continuous map c : X → En, a closed
form ω ∈ Ωnclo(X;V •) and a singular cochain h ∈ Cn−1(X;V •) such that δh = c∗ιn − ω
as smooth singular cocycles.

A particularly important case is when V = V •E and ιE ∈ Z0(E;V •E) is the fundamental
cocycle, i.e., a singular cocycle representing the Chern-Dold character of E. In this case the

associated differential cohomology groups ÊnHS(X; ιE) satisfies the axioms of differential
cohomology theory in [BS10]. The isomorphism class of the resulting group is independent
of the choice of the fundamental cocycle ιE , with an isomorphism given by a cochain
cobounding the difference.

In [HS05, Section 4.10], a differential pushforward is defined simply as maps of differ-
ential function spaces3,

Ĝ :
(
MTG−r ∧ (En)+;VG(ιMTG)−r ∪ (ιE)n

)
→ (E; ιE)n−r, (3.2)

refining the map MTG∧(En)+ G∧id−−−→ E∧(En)+ multi−−−→ ΣnE. Here we are taking V = V •E ,
and the cocycle VG(ιMTG) ∈ Z0(MTG;V •E) is obtained by applying VG : VMTG → VE
on the coefficient of ιMTG. Then4, the map Ĝ associates to every proper neat map of
p : N → X of relative dimension r with a differential (tangential) BG-orientation gHS

p

with a map

(p, gHS
p )∗ : Ê∗HS(N ; ιE)→ Ê∗−rHS (X; ιE), (3.3)

called the differential pushforward map.

Remark 3.4. As we explain in Appendix A.2 and A.3, the definition of (the tan-
gential version of) differential BG-oriented maps in [HS05] differs from the differen-
tial stable relative G-structure in [YY21, Definition 5.12]. Fix a fundamental cocycle
ιMTG ∈ Z0(MTG;V •MTG). Given a proper smooth map p : N → X, a topological tan-
gential BG-orientation consists of a choice of embedding N ↪→ Rk × X for some k, a

3This point is important in the proof of Proposition 3.21, which is the main ingredient of the proof of
the main result (Theorem 3.26). This is the reason why we want to use the Hopkins-Singer’s formulation.

4As we explain in Appendix A.2, this process needs some additional choices of cochains. By the
assumption that E is rationally even, the resulting map on the differential cohomology level does not

depend on the choices.
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tubular neighborhood W of N in Rk ×X with a vector bundle structure W → N , and a
classifying map W := Thom(W ) → MTGk−r. A differential tangential BG-orientation
gHS
p consists of its lift to a differential function

t(gHS
p ) = (c, h, ω) : W → (MTGk−r, (ιMTG)k−r), (3.5)

Then the map (3.3) is given by (3.2) and the Pontryagin-Thom construction. The resulting
pushforward maps depend on the various choices.

Remark 3.6. However, using the assumption that E is rationally even, in the case
where p is a submersion the situation is simple. First of all, the relative tangent bundle
T (p) = ker(TN → TX) makes sense, and we restrict our attention to the case where
we are given a differential stable G-structure gp on T (p) (as opposed to the more general
notion of differential stable relative tangential G-structure on p in [YY21, Definition 5.12]).
Then, associated to such gp there is a canonical set of choices of gHS

q which gives the same

map (3.3). We explain this point in details in Appendix A. We call such gHS
p a lift of gp

(Definition A.44). The map (3.3) defined by any choice of a lift gHS
p of gp is the unique

map denoted by

(p, gp)∗ := (p, gHS
p )∗ : Ê∗HS(N ; ιE)→ Ê∗−rHS (X; ιE). (3.7)

We simply call it the differential pushforward map (Definition A.40 and Proposition A.45).

In the case where p : N → X is a submersion and equipped with a differential stable
G-structure gp on T (p), there is also the corresponding pushforward map on the level
of differential forms. The Chern-Dold character (1.8) of the multiplicative genus G ∈
E0(MTG) is the element

ch(G) ∈ H0(MTG;V •E). (3.8)

For example, for G = τ : MTSO → HZ, the Chern-Dold chacacter is trivial, 1. For
G = ABS: MTSpinc → K and G = ABS: MTSpin → K, the Chern-Dold characters

are the Todd polynomial and the Â polynomial, respectively. Applying the Chern-Weil
construction in (2.8), we get the Chern-Dold character form for the relative tangent
bundle,

cwgp(ch(G)) ∈ Ω0
clo(N ; Ori(T (p))⊗R V

•
E). (3.9)

Using this, the pushforward map on Ω∗(−;V •E) is given by∫
N/X

− ∧ cwgp(ch(G)) : Ωn(N ;V •E)→ Ωn−r(X;V •E). (3.10)

Restricted to the closed forms, the induced homomorphism on the cohomology, Hn(N ;V •E)
→ Hn−r(X;V •E), is compatible with the Chern-Dold character (1.8) for E and the topo-
logical pushforward (3.1). The differential pushforward map in (3.7) is compatible with
the map (3.10) (tangential version of (A.19)).
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In particular, if X = pt, for every n-dimensional differential stable tangential G-cycle
(M, g) over pt, the differential pushforward map (3.7) is

(pM , g)∗ : Ê∗HS(M ; ιE)→ Ê∗−nHS (pt; ιE). (3.11)

As we explain in the last part of Appendix A.1, an important property of the push-
forward is the following Bordism formula, relating the pushforward of differential forms
(3.10) on the bulk and the differential pushforward (3.11) on the boundary.

Fact 3.12 (Bordism formula, [Bun13, Problem 4.235]). For any morphism

[W, gW ] : (M−, g−)→ (M+, g+) in hBordG∇n−1(pt), the following diagram commutes.

Ê∗HS(W ; ιE)
R //

(−i∗M− )⊕i∗M+

��

Ω∗(W ;V •E)

∫
W
−∧cwg(ch(G))

// Ω∗−n(pt;V •E)

a

��
Ê∗HS(M−; ιE)⊕ Ê∗HS(M+; ιE)

(pM− ,g−)∗⊕(pM+
,g+)∗

// Ê∗−n+1(pt)

.

Example 3.13. In the case G = τ : MTSO→ HZ, the nontrivial degree of pushforwards

(pM , g)∗ : ĤdimM+1(M ;Z) → Ĥ1(pt;Z) ' R/Z are called the higher holonomy function
which appears in the definition of Chern-Simons invariants. In terms of the Cheeger-

Simons model of ĤZ in terms of differential characters [CS85], it is given by the evaluation
on the fundamental cycle. In particular for the case dimM = 1 it is the usual holonomy,
and the Bordism formula is satisfied because of the relation between the curvature and
the holonomy for U(1)-connections.

Example 3.14. In the case G = ABS: MTSpinc → K, Freed and Lott [FL10] con-

structed a model of K̂ in terms of hermitian vector bundles with hermitian connec-
tions, and the refinement of pushforwards when dimM is odd, (pM , g)∗ : K̂0(M) →
K̂− dimM (pt) ' R/Z, is given by the reduced eta invariants. The Bordism formula is
a consequence of the Atiyah-Patodi-Singer index theorem.

3.2. Differential Pushforwards in terms of functors

As a preparation to the main Subsection 3.3, in this subsection we translate the data
of differential pushforwards into functors from hBordG∇− (−).

Definition 3.15. In the above settings, let X be a manifold, k be an integer and ê ∈
ÊkHS(X; ιE). Let n be an integer with k + n − 1 ≥ 0. Then define the functor of Picard
groupoids,

TG,ê : hBordG∇k+n−1(X)→
(
V −nE

a−→ Ê1−n
HS (pt; ιE)

)
, (3.16)

by the following.

• On objects, we set

TG,ê(M, g, f) := (pM , g)∗f
∗(ê) ∈ Ê1−n

HS (pt; ιE) (3.17)
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• On morphisms, we set

TG,ê([W, gW , fW ]) := cw(R(ê) ∧ ch(G))([W, gW , fW ]).

Here R(ê) ∈ Ωkclo(X;V •E) is the curvature of ê and we use (2.10).

The well-definedness of the functor follows by the Bordism formula in Fact 3.12.

As is easily shown by the Bordism formula, the formula (3.17) defines the homomorphism

TG,ê : CG∇k+n−1(X)→ Ê1−n
HS (pt; ιE). (3.18)

As expected, the transformation (3.16) is induced by the first arrow in (3.27). To show
this, first remark that for any spectrum F and its any fundamental cycle ιF , the forgetful
functor gives the equivalence of Picard groupoids,

π≤1((F ; ιF )pt
n ) ' π≤1(Fn), (3.19)

where the left hand side means the simplicial fundamental groupoid, whose objects are
differential functions tpt : pt→ (F ; ιF )n, and morphisms are bordism classes of differential
functions tI : I → (F ; ιF )n. The right hand side is the fundamental groupoid for the space
Fn, which is equipped with the structure of a Picard groupoid by [HS05, Example B.7].

We have a functor of Picard groupoids5,

ev : π≤1

(
(E; ιE)pt

1−n
)
→
(
V −nE

a−→ Ê1−n
HS (pt; ιE)

)
, (3.20)

given by assigning the element [tpt] ∈ Ê1−n
HS (pt; ιE) for an object and the integration of

the curvature R([tI ]) ∈ Ω1−n
clo (I;V •E) for a morphism.

Proposition 3.21. The functor (3.16) of Picard groupoids is naturally isomorphic to the
following composition,

hBordG∇k+n−1(X) ' π≤1(L(X+ ∧MTG)1−k−n)
e∧G−−→ π≤1(E1−n)→

(
V −nE

a−→ Ê1−n
HS (pt; ιE)

)
,

(3.22)

where the first arrow is the equivalence in (2.5), and the last arrow is the composition of
(3.19) and (3.20).

Proof. Choose a differential function t(ê) : X → (Ek; (ιE)k) representing ê. For each

object (M, g, f) in hBordG∇k+n−1(X), choose a Hopkins-Singer’s differential G-structure

gHS lifting g. By the discussion in Appendix A.2 and its tangential variant in Appendix
A.3, we get a functor

hBordG∇k+n−1(X)→ π≤1((Ek)+ ∧MTG1−k−n; (ιE)k ∪ VG(ιMTG)1−k−n)pt). (3.23)

5The right hand side is the Picard groupoid associated to the homomorphism a : V −n
E → Ê1−n

HS (pt; ιE)

of abelian groups. In general, a homomorphism ∂ : A → B between abelian groups associates a Picard

groupoid (A
∂−→ B), whose objects are elements of B, and a morphism from b to b′ is given by an element

a ∈ A such that b′ − b = ∂(a).
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Indeed, for objects, given (M, g, f) with the chosen lift gHS, denote the underlying
embedding and tubular neighborhood by M ⊂ U ⊂ RN . We have differential func-
tions f∗t(ê) : M → (E; ιE)k and t(gHS) : U → (MTG; ιMTG)N−(k+n−1). Applying the
(MTG-version of the) left vertical arrow of (A.28) to them and using the open em-
bedding U ↪→ RN (the Pontryagin-Thom collapse), we get the differential function
pt→ (Ek ∧MTG1−k−n; (ιE)k ∪ VG(ιMTG)1−k−n).

For morphisms [W, gW , fW ] : (M−, g−, f−) → (M+, g+, f+), choose any representative
(W, gW , fW ) and smooth map pW : W → I (not necessarily a submersion) so that it
coincides with a collar coordinates of each objects (M±, g±, f±) near the endpoints, re-
spectively. The structure gW induces gpW , in particular the topological structure gtop

pW , on

pW . Take any Hopkins-Singer’s differential tangential BG-oorientation gHS
pW (Appendix

A.3) for pW which coincides with the chosen lifts at the boundary, and whose underlying
map classifies gtop

pW . Then applying the same procedure as that we did for objects above,
we get a differential function I → (Ek ∧MTG1−k−n; (ιE)k ∪ VG(ιMTG)1−k−n) which re-
stricts at the boundary to the ones assigned to objects above. Since any of the choices
we have made is unique up to bordisms, the resulting morphism in the right hand side of
(3.23) is uniquely determined. This gives the desired functor.

By Definition 3.15 and Proposition A.45, the functor TG,ê coincides with the composi-
tion of (3.23) with

π≤1

(
(Ek ∧MTG1−k−n; (ιE)k ∪ VG(ιMTG)1−k−n)

pt
)
Ĝ−→ π≤1((E; ιE)pt

1−n) (3.24)

ev−→
(
V −nE

a−→ Ê1−n
HS (pt; ιE)

)
.

The fact that it is naturally isomorphic to (3.22) is just the cosequence of the fact that ê

and Ĝ are refinements of e and G, respectively. This completes the proof. �

3.3. The construction and the proof

In this main subsection, we state and prove the main result of this article. Let G
be a multiplicative tangential structure groups, E be a rationally even ring spectrum
and G : MTG → E be a homomorphism of ring spectra. Fix an integer n such that
E1−n(pt)⊗ R = 0. We construct a natural transformation

ΦG : Ê∗HS(−; ιE)⊗ IEn(pt)→ (ÎΩGdR)∗+n(−), (3.25)

on Mfdop (Definition 3.36).
The main result of this paper is the following topological characterization of the trans-

formation (3.25).

Theorem 3.26 (=Theorem 1.2). In the above settings, let X be a manifold and k be an in-

teger. For ê ∈ ÊkHS(X; ιE) and β ∈ IEn(pt), the element I(ΦG(ê⊗β)) ∈ (IΩG)k+n(X) =
[X+ ∧MTG,Σk+nIZ] coincides with the following composition,

X+ ∧MTG
e∧G−−→ ΣkE ∧ E multi−−−→ ΣkE

β−→ Σk+nIZ. (3.27)
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Here we denoted e := I(ê) ∈ Ek(X).

As a preparation, we show that there exists a canonical homomorphism6

s : IEn(pt)→ HomCh

((
V −nE

a−→ Ê1−n
HS (pt; ιE)

)
, (R→ R/Z)

)
, (3.28)

where HomCh denotes the group of chain maps of complexes of abelian groups. Indeed,
by [HS05, (4.57)], we have a canonical isomorphism7

ker
(
R : Ê∗HS(−; ιE)→ Ω∗clo(−;V •E)

)
' E∗−1(−;R/Z). (3.29)

Here, for any abelian group G, the cohomology theory E∗(−;G) is represented by the
spectrum EG := E ∧ SG, where SG is the Moore spectrum. As explained there, this
is because the differential function complexes can be fits into the homotopy Cartesian
square [HS05, (4.12)]. Applied to pt and ∗ = 1− n, we get the identification

Ê1−n
HS (pt; ιE) = ker

(
R : Ê1−n

HS (pt; ιE)→ V 1−n
E

)
' E−n(pt;R/Z). (3.30)

An element β ∈ IEn(pt) = [E,ΣnIZ] induces the element βG ∈ [EG,ΣnIZ∧SG] for any
G, and using IZ∧SR ' HR and IZ∧SR/Z ' IR/Z, we get the induced homomorphisms
on pt, which we also denote as

βR : V −nE = E−n(pt;R)→ R, (3.31)

βR/Z : Ê1−n
HS (pt; ιE)

'−−−−→
(3.30)

E−n(pt;R/Z)→ R/Z, (3.32)

The homomorphism (3.31) coincides with the one obtained by the map IEn(X) →
Hom(En(X),R) in (2.1). The homomorphism (3.28) is given by mapping β to the pair
(βR, βR/Z). The well-definedness follows by the construction.

On the other hand, by [HS05, Corollary B.17]8 (also see [YY21, Fact 2.6] and the
explanations there), we have an isomorphism for any spectra E,

IEn(pt) ' π0FunPic (π≤1(E1−n), (R→ R/Z)) , (3.33)

where π0FunPic means the group of natural isomorphism classes of functors of Picard
groupoids. By (3.19), (3.20) and (3.33), we get a homomorphism

ev∗ : π0FunPic

((
V −nE

a−→ Ê1−n
HS (pt; ιE)

)
, (R→ R/Z)

)
→ IEn(pt). (3.34)

It directly follows from the definition of the identification (3.29) that we have

id = ev∗ ◦ s : IEn(pt)→ IEn(pt). (3.35)

6The existsnce of a canonical pairing IE−n(pt)⊗Ê1−n
HS (pt; ιE)→ R/Z is used in [FMS07, Proposition

6], in particular in the last arrow of the second line of the proof of that proposition. They do not state

any condition on E, but they use the assumption V 1−n
E = 0 implicitely.

7This isomorphism does not follow from the axiom of differential cohomology theory in [BS10]. For
more on this point, see [BS10, Section 5].

8Note that there is an obvious typo of the degree in the statement of [HS05, Corollary B.17].
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Definition 3.36 (ΦG). In the settings explained in the beginning of this subsection, for
each manifold X we define a homomorphism of abelian groups

ΦG : Ê∗HS(X; ιE)⊗ IEn(pt)→ (ÎΩGdR)∗+n(X), (3.37)

by the following. For ê ∈ ÊkHS(X; ιE) and β ∈ IEn(pt), set ΦG(ê ⊗ β) := (βR(R(ê) ∧
ch(G)), βR/Z ◦ TG,ê) ∈ (ÎΩGdR)k+n(X), where

• the element βR(R(ê) ∧ ch(G)) ∈ Ωn+k
clo (X;N•G) is obtained by applying (3.31) on

the coefficient of R(e) ∧ ch(G) ∈ Ωkclo(X;H∗(MTG;V •E)).
• βR/Z ◦ TG,ê is the composition of (3.18) and (3.32).

The fact that the pair (βR(R(ê)∧ ch(G)), βR/Z(TG,ê)) satisfies the compatibility condition
follows from the well-definedness of (3.28) and the fact that TG,e in Definition 3.15 is a
functor.

Now we prove Theorem 3.26.

Proof of Theorem 3.26(=Theorem 1.2). We use the argument in [YY21, Subsection 4.2].

Recall that, for an element (ω, h) ∈ (ÎΩGdR)N (X) we associated a functor

F(ω,h) : hBordG∇N−1(X) → (R → R/Z) in [YY21, (4.46)]. In the proof of [YY21, Theorem
4.51], the natural isomorphism

IΩG ' IΩGdR, (3.38)

where for the former we use the model of IZ by [HS05, Corollary B.17], was given as
follows. Using the equivalence (2.5), we have

(IΩG)N (X) = π0FunPic

(
π≤1(hBordG∇N−1(X)→ (R→ R/Z)

)
.

The map (3.38) is given by mapping the isomorphism class of the functor F(ω,h) to

I(ω, h) ∈ (IΩGdR)N (X).

Now fix ê ∈ ÊkHS(X; ιE) and β ∈ IEn(pt). By Definitions 3.36 and 3.15, the functor
associated to ΦG(ê⊗ β) coincides with the following composition.

FΦG(ê⊗β) : hBordG∇k+n−1(X)
TG,ê−−−→

(
V −nE

a−→ Ê1−n
HS (pt; ιE)

)
s(β)=(βR,βR/Z)
−−−−−−−−−−→ (R→ R/Z).

(3.39)

Combining this with Proposition 3.21 and (3.35), we see that, under the equivalence

hBordG∇k+n−1(X) ' π≤1(L(X+ ∧MTG)1−k−n), (3.39) coincides with

π≤1(L(X+ ∧MTG)1−k−n)
e∧G−−→ π≤1(E1−n)

β−→ (R→ R/Z),

up to a natural isomorphism. This completes the proof of Theorem 3.26. �
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3.4. Examples

3.4.1. The holonomy theory (1) : [YY21, Example 4.54]

Here we explain the easiest example of the “Holonomy theory (1)” which appeared in
[YY21, Example 4.54]. This corresponds to the case E = HZ, G = τ : MTSO → HZ is
the usual orientation, and n = 0.

Recall that, given a manifold X and a hermitian line bundle with unitary connection
(L,∇) over X, we get the element

(c1(∇),Hol∇) ∈ (ÎΩSO
dR)2(X). (3.40)

On the other hand, in the case E = HZ we have the canonical choice of an element in
IHZ0(pt), namely the Anderson self-duality element γH ∈ IHZ0(pt). Thus we have the
homomorphism

Φτ (−⊗ γH) : Ĥ2(X;Z)→ (ÎΩSO
dR)2(X).

Using the model of ĤZ
2

in terms of hermitian vector bundles with U(1)-connections (for

example see [HS05, Example 2.7]), the pair (L,∇) defines a class [L,∇] ∈ Ĥ2(X;Z). We
have the following.

Proposition 3.41. We have the following equality in (ÎΩSO
dR)2(X),

(c1(∇),Hol∇) = Φτ ([L,∇]⊗ γH). (3.42)

Moreover, the element I(c1(∇),Hol∇) ∈ (IΩSO
dR)2(X) coincides with the following compo-

sition,

X+ ∧MTSO
c1(L)∧τ−−−−−→ Σ2HZ ∧HZ multi−−−→ Σ2HZ γH−−→ Σ2IZ.

Proof. The last statement follows from (3.42) and Theorem 3.26. The equality (3.42)
follows from the fact that the self-duality element γH induces the canonical isomorphism

Ĥ1(pt;Z) ' R/Z and H0(pt;Z) ' R, together with the following well-known facts about

ĤZ (for example see [HS05, Section 2.4]). The element [L,∇] ∈ Ĥ2(X;Z) satisfies

γH ◦R([L,∇]) = c1(∇) ∈ Ω2(X),

and, given a map f : M → X from an oriented 1-dimensional closed manifold (M, g), the

pushforward (pM , g)∗ : Ĥ2(M ;Z)→ Ĥ1(pt;Z)
γH−−→
'

R/Z

γH ◦ (pM , g)∗f
∗[L,∇] = Holf∗∇.

�
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3.4.2. The classical Chern-Simons theory : [YY21, Example 4.56]

Here we explain the classical Chern-Simons theory which appeared in [YY21, Example
4.56]. This is essentially a generalization of Subsection 3.4.1, corresponding to the case
E = HZ, G = τ : MTSO→ HZ is the usual orientation, and n = 0.

Recall that, given a compact Lie group H and an element λ ∈ Hn(BH;Z), the cor-
responding classical Chern-Simons theory of level λ is defined by choosing an (n + 1)-
classifying object (E ,B,∇E) in the category of manifolds with principal H-bundles with

connections, and fixing an element λ̂ ∈ Ĥn(B;Z) lifting λ. Then we have the element

(1⊗ λR, hCS
λ̂
) ∈ ( ̂IΩSO×H

dR )n(pt), (3.43)

whose equivalence class in (IΩSO×H
dR )n(pt) does not depend on the lift λ̂.

Proposition 3.44. The element I(1 ⊗ λR, hCS
λ̂
) ∈ (IΩSO×H

dR )n(pt) coincides with the
following composition,

BH+ ∧MTSO
λ∧τ−−→ ΣnHZ ∧HZ multi−−−→ ΣnHZ γ−→ ΣnIZ.

Proof. The classifying map induces an equivalence

π≤1(L(B+ ∧MTSO)n−1) ' π≤1(L(BH+ ∧MTSO)n−1).

Moreover, by the pullback of the universal connection ∇E it is refined to a functor of
Picard groupoids,

hBordSO
n−1(B)

'−→ hBordSO×H
n−1 (pt) (3.45)

which is naturally isomorphic to the above one under the equivalences

hBordSO
n−1(X) ' π≤1(L(X+ ∧MTSO)n−1).

We have the element

Φτ (λ̂⊗ γH) ∈ (ÎΩSO
dR)n(B). (3.46)

Recall that an element (ω, h) ∈ (ÎΩGdR)n(X) associates a functor F(ω,h) : hBordG∇n−1(X)→
(R → R/Z) by [YY21, (4.46)]. We claim that the functors associated to the elements
(3.46) and (3.43) are related by

FΦτ (λ̂⊗γH) : hBordSO
n−1(B)

(3.45)−−−−→ hBordSO×H
n−1 (pt)

F(1⊗λR,hCS
λ̂

)

−−−−−−−−−→ (R→ R/Z).

Indeed, this follows from the fact that the Chern-Simons invariants are given by the
pushforward in differential ordinary cohomology [YY21, (4.58)]. Applying Theorem 3.26
to the element (3.46), we get the result. �
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3.4.3. The theory of massive free complex fermions : [YY21, Example 4.62]

Here we explain the example of the theory on massive free complex fermions which
appeared in [YY21, Example 4.62]. This example corresponds to the case E = K, G =
ABS: MTSpinc → K and n = 0.

Recall that, given a hermitian vector bundle with unitary connection (W,∇W ) over a
manifold X, we get an element

(
(Ch(∇W )⊗ Todd)|2k, η∇W

)
∈
(

̂IΩSpinc

ph

)2k

(X) '
(

̂IΩSpinc

dR

)2k

(X).

On the other hand, in the case E = K we have the canonical choice of an element in
IK0(pt), namely the self-duality element γK ∈ IK0(pt). Thus we have the homomor-
phism

ΦABS(−⊗ γK) : K̂2k(X)→ ( ̂IΩSpinc

dR )2k(X). (3.47)

Using the model of K̂ in terms of hermitian vector bundles with unitary connections by

Freed-Lott ([FL10]), we have the class [W,hW ,∇W , 0] ∈ K̂0(X) ' K̂2k(X).

Proposition 3.48. We have the following equality in ( ̂IΩSpinc

dR )2k(X),

((Ch(∇W )⊗ Todd)|2k, η̄∇W ) = ΦABS([W,hE ,∇E , 0]⊗ γK). (3.49)

Moreover, the element I((Ch(∇W )⊗Todd)|2k, η̄∇W ) ∈ (IΩSpinc)2k(X) coincides with the
following composition,

X+ ∧MTSpinc
[E]∧ABS−−−−−−→ K ∧K multi−−−→ K

Bott−−−→
'

Σ2kK
γK−−→ Σ2kIZ.

Proof. The last statement follows from (3.49) and Theorem 3.26. Denote the Bott element
by u ∈ K−2(pt). The equality (3.49) follows from the fact that the self-duality element

γK induces the canonical isomorphism K̂1(pt) ' R/Z and K0(pt) ' Z, together with the

following facts about K̂ in [FL10]. The element [W,hW ,∇W , 0] ∈ K̂0(X) satisfies

R([W,hE ,∇E , 0]) = Ch(∇W ) ∈ Ω0(X;V •K) = Ω0(X;R[u, u−1]),

and, given a map f : M → X from an oriented (2k− 1)-dimensional closed manifold with

a physical Spinc-structure (M, g), the pushforward (pM , g)∗ : K̂0(M) → K̂−2k+1(pt) is
given by

(pM , g)∗f
∗[W,hW ,∇W , 0] = η̄∇W (M, g, f) · uk ∈ K̂−2k+1(pt) = (R/Z) · uk.

�
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3.4.4. An interpretation of Subsection 3.4.3 - Taking anomaly theories of free
spinor field theories

Here we explain an interpretation of the result in Subsection 3.4.3 in terms of anomalies
of free spinor field theories.

We briefly recall the explanation in [Fre19, Lecture 11] and [FH21, Section 9] about
free spinor field theory and its anomalies. A real spinor representation S of Spin1,d−1 and
a (contractible) choice of nonnegative symmetric invariant bilinear pairing Γ: S × S →
R1,d−1 determine an d-dimensional possibly anomalous theory called the free real spinor
field theory F(S,Γ). The spinor representation S gives an element [S] ∈ π2−dKO.

An anomalous d-dimensional field theory is formulated as a boundary theory of (d+1)-
dimensional invertible field theory called the associated anomaly theory, which is classified
by (IΩG)d+2. In this case the relevant structure group is G = Spin. As explained in the
references, the anomaly theory associated to F(S,Γ) has partition function given by suitable
fraction of exponentiated reduced eta invariants, depending on d mod 8.

Freed and Hopkins suggested the following conjecture.

Conjecture 3.50 ([Fre19, Conjecture 11.23], [FH21, Conjecture 9.70]). The (d + 1)-
dimensional anomaly theory associated to the d-dimensional free real spinor field theory
F(S,Γ) correponds to the element in (IΩSpin)d+2(pt) given by the following composotion.

MTSpin
[S]∧ABS−−−−−→ Σd−2KO ∧KO multi−−−→ Σd−2KO

γKO−−−→ Σd+2IZ. (3.51)

Here ABS: MTSpin→ KO is the Atiyah-Bott-Shapiro map and γKO ∈ IKO4(pt) is the
Anderson self-duality element for the KO-theory.

The composition 3.51 is the special case of the composition (3.27) for X = pt. But
actually at this point we do not have a proof for Conjecture 3.50, since we do not have
the complete understanding of the pushforward in differential KO-theory. Before explain-
ing the details, let us explain the complexified version where we can actually show the
corresponding statement using the result in Subsection 3.4.3.

In the complexified settings, we have the corresponding story. A complex spinor rep-
resentation S gives a class [S] ∈ π2−dK ' π−2−dK. In this case nontrivial classes appears
only when d is even, so we focus on this case.

Proposition 3.52 (Complex version of Conjecture 3.50). The (2k−1)-dimensional anom-
aly theory associated to the (2k − 2)-dimensional free complex spinor field theory F(S,Γ)

correponds to the element in (IΩSpinc

)2k(pt) given by the following composotion.

MTSpinc [S]∧ABS−−−−−→ Σ2kK ∧K multi−−−→ Σ2kK
γK−−→ Σ2kIZ. (3.53)

Proof. We apply the result in Subsection 3.4.3 for X = pt. In this case, we simply

have K̂2k(pt) = K2k(pt) ' Z and ( ̂IΩSpinc)2k(pt) ' (IΩSpinc

)2k(pt). We know from
Proposition 3.48 that, in the case [S] ∈ K2k(pt) is the generator, the composition (3.53)
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equals to the element

(Todd|2k, η̄) ∈ (IΩSpinc)2k(pt) (3.54)

This is indeed the anomaly theory for F(S,Γ), whose partition function is given by the
exponentiated eta invariants. �

As we see from the proof, our result can be useful even when X = pt. The general
case of nontrivial X can be regarded as giving the parametrized version. Also we see
that the proof uses the knowledge of pushforward in differential K-theory as reduced eta
invariants.

Let us go back to the real case. We can apply Theorem 1.2 to deduce that the compo-
sition (3.51) gives the element9

ΦABS ([S]⊗ γKO) ∈ (ÎΩSpin
dR )d+2(pt). (3.55)

The remaining problem is to understand this element, which is equivalent to understand-
ing the pushforward in differential KO-theory. As far as the author is aware of, we do
not have the enough understanding of this pushforward to verify Conjecture 3.50.

Remark 3.56. In the examples in this subsection, we used the Anderson self-duality
elements in IEn(pt) for E = HZ,K,KO. However, the results in this subsection do not
use the self-duality, and indeed there are many other interesting examples given by non-
self-duality elements in IEn(pt). For example, in the analysis of anomalies of the heterotic
string theories in [TY21], we encounter such examples when E = TMF and E = KO((q))
with the Witten genus G = Wit: MTString → TMF and G = WitSpin : MTSpin →
KO((q)).

Appendix A. Differential pushforwards for proper submersions

As mentioned in Subsection 3.1, there are certain subtleties regarding the formulations
of differential pushforwards. In this appendix, we explain that there is a nice theory
on differential pushforwards for proper submersions under the assumption that E is ra-
tionally even. The author believe that the results in this Appendix well-known among

experts. It is convenient to start with multiplicative differential extensions Ê which are
not necessarily the one given by the Hopkins-Singer. The minimal requirements for the

differential extension Ê are,

• for real vector bundles V → X over manifolds, the properly supported differential
cohomology groups

Ê∗prop/X(V ) (A.1)

are defined with a module structure over Ê∗(X), so that they refine properly
supported cohomologies and forms.

9In the case d− 2 ≡ 0 (mod 4), we have K̂O
d−2

(pt) = KOd−2(pt). In other cases, since KOd−2(pt)

is 0 or Z/2, we have KOd−2(pt) ' K̂O
d−2

(pt) canonically.
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• If we have a vector bundle W → N and we have an open embedding ι : W ↪→ V
in the total space of another vector bundle V → X, we have the corresponding
map

ι∗ : Ê∗prop/N (W )→ Ê∗prop/X(V ),

refining the topological and form counterparts.
• We have the desuspension map,

desusp: Ê∗prop/X(Rk ×X)→ Ê∗−k(X),

refining the topological and form counterparts.

Since we are assuming E is rationally even, the Hopkins-Singer’s differential extension

Ê∗HS(−; ιE) admits a canonical multiplicative structure by [Upm15], and the above prop-
erties are also satisfied.

A.1. The normal case

In this subsection we explain the normal case. The content of this subsection basically
follows the unpublished survey by Bunke [Bun13, Section 4.8–4.10]. Let G and E be
multiplicative with E rationally even, and assume we are given a homomorphism of ring
spectra,

G : MG→ E, (A.2)

where MG is the Thom spectrum. Then for each real vector bundle V of rank r over a
topological space X equipped with a stable G-structure gtop, we get the Thom class ν ∈
Er(V ), where we denote V := Thom(V ). Its multiplication gives the Thom isomorphism
E∗(X) ' E∗+r(V ). Its Chern-Dold character is an element ch(ν) ∈ Hr(V ;V •E). We set

Td(ν) :=

∫
V/X

ch(ν) ∈ H0(X; Ori(V )⊗R V
•
E).

Definition A.3 (Differential Thom classes, Td(ν̂), homotopy). Let V be a smooth real
vector bundle over a manifold M of rank r equipped with a stable G-structure gtop.

(1) A differential Thom class ν̂ ∈ Êrprop/M (V ) is an element such that

I(ν̂) ∈ Êrprop/M (V ) is the Thom class for (V, gtop).

(2) For such a ν̂, we define

Td(ν̂) :=

∫
V/M

R(ν̂) ∈ Ω0
clo(M ; Ori(V )⊗R V

•
E). (A.4)

(3) A homotopy between two differential Thom classes ν̂0 and ν̂1 is a differential Thom

class ν̂I ∈ Êrprop/(I×M)(I × V ) for pr∗MV with ν̂I |{i}×V = ν̂i for i = 0, 1 such that

Td(ν̂I) = pr∗MTd(ν̂0). (A.5)

The homotopy class of ν̂ is denoted by [ν̂].
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In particular, if ν̂0 and ν̂1 are homotopic, we have Td(ν̂0) = Td(ν̂1). Thus we use the
notation Td([ν̂]) ∈ Ω0

clo(M ; Ori(V )⊗R V
•
E).

Lemma A.6. Let M and (V, gtop) be as before, and ν be the Thom class for (V, gtop).
Assume we are given an element ω ∈ Ω0

clo(M ; Ori(V )⊗RV
•
E) such that Rham(ω) = Td(ν).

(1) There exists a differential Thom class ν̂ with Td(ν̂) = ω.
(2) The set of homotopy classes [ν̂] of differential Thom classes with Td([ν̂]) = ω is

a torsor over

H−1(M ; Ori(V )⊗R V
•
E)

Td(ν) ∪ a(E−1(M))
. (A.7)

Proof. The proof is in [Bun13, Problem 4.186], and essentially the same proof appears in
[GS21, Proposition 49] in the case of KO-theory. We need the orientation bundles here
because we allow G to be un-oriented. �

If V is equipped with a stable differential G-structure g, applying the Chern-Weil
construction (2.8) to ch(G) ∈ H0(MG;V •E), we have

cwg(ch(G)) ∈ Ω0
clo(M ; Ori(V )⊗R V

•
E). (A.8)

This satisfies Rham(cwg(ch(G))) = Td(ν).

For (V, gV ) of rank r represented by g̃V = (d, P,∇, ψ : P ×ρd Rd ' Rd−r ⊕ V ) with
d ≥ r+1, we associate a differential stable G-structure gR⊕V on R⊕V which is represented

by (d, P,∇, ψ : P ×ρd Rd ' Rd−r−1⊕ (R⊕ V )). For a topological stable G-structure gtop
V ,

we define gtop
R⊕V in the same way.

If we have a homotopy class of diffential Thom classes [ν̂R⊕V ] for (R ⊕ V, gtop
R⊕V ), the

integration ∫
R

[ν̂R⊕V ]

defines a well-defined homotopy class of differential Thom classes for (V, gtop
V ). Moreover,

by Lemma A.6, the above integration gives a bijection between the sets of homotopy
classes of diffential Thom classes for (R⊕ V, gtop

R⊕V ) and for (V, gtop
V ).

Proposition A.9. 10 There exists a unique way to assign a homotopy class [ν̂(g)] of

differential Thom classes ν̂(g) ∈ ÊrankV
prop/M (V ) to every real vector bundle with differential

stable G-structure (V, g)→M such that the following three conditions hold.

(1) It is compatible with pullbacks.
(2) We have

∫
R[ν̂(gR⊕V )] = [ν̂(gV )].

(3) We have cwg(ch(G)) = Td([ν̂(g)]).

10In the proof we use the assumption that E is rationally even. However, by a small modification
of the proof, this assumption can be weakened to H−1(MG;V •E) = 0. As a result, the results in this

subsection hold under this weaker condition. The same remark applies to Proposition A.35.
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Moreover, the resulting homotopy class [ν̂(g)] only depends on the homotopy class (Defi-
nition 2.3 (4)) of differential stable G-structure g.

Proof. By the condition (2), it is enough to consider only (V, g) such that g is represented
by a representative of the form g̃ = (rank(V ), P,∇, ψ), i.e., without stabilization.

The proof basically follows that for [Bun13, Problem 4.197]. Suppose we have (V, g) of
rank r over M with dimM = n with a representative g̃ = (r, P,∇, ψ). Take a manifold
B with an (n+ 1)-connected map B → BGr. We can factor the classifying map for P as

M
f−→ B → BGr with f smooth. Take a Gr-connection ∇B on the pullback P → B of the

universal bundle, and denote by the resulting differential G-structure on V := P ×Gr Rr
by gV . We have maps fP : P → P and fV : V → V covering f . We may assume that gV
pulls back to g by (f, fP , fV ).

The difference of any two choices of the homotopy classes [ν̂(gV)] of differential Thom

classes on (V, gV) is measured by an element in
H−1(B;Ori(V)⊗RV

•
E)

Td(ν(gV))∪a(E−1(B)) by Proposition A.6.

The pullback map f∗ : H−1(B; Ori(V)⊗R V
•
E)→ H−1(M ; Ori(V )⊗R V

•
E) is zero because

B → BGr is (n+ 1)-connected and we have H−1(BGr; (EGr ×Gr RGr )⊗R V
•
E) = 0 since

E is rationally even. Thus, taking any homotopy class [ν̂(gV)] of differential Thom classes
for (V, gV), the pullback

f∗V [ν̂(gV)] (A.10)

defines a homotopy class of differential Thom classes for (V, g) which does not depend on
the choice of [ν̂(gV)]. By the condition (1) and (2), we are forced to define the required
homotopy class as

[ν̂(g)] := f∗V [ν̂(gV)], (A.11)

by taking any [ν̂(gV)] on (V, gV).
We need to check that the element (A.11) does not depend on the other choices made

above. But this easily follows from the cofinality of such choices. Namely, given two
choices with the underlying manifolds fi : M → Bi for i = 1, 2, we may take another B
with maps gi : Bi → B so that g1 ◦ f1 = g2 ◦ f2, and other data on B which pulls back to
those given on Bi. From this, we conclude that the elements (A.11) defined using B1 and
B2 coincide with the one defined using B, so the element (A.11) is well-defined. By the
arguments so far, they satisfy the required conditions and the uniqueness.

For the last statement, changing a differential stable G-structure g on V to a homotopic
one amounts to changing the vector bundle map fV : V → V by a homotopy while fixing
f and fP in the above procedure. Pulling back the homotopy class [ν̂(gV)] by such a
homotopy, we get a homotopy of differential Thom classes between the differential Thom
classes pulled back at the endpoints. This completes the proof. �

Now we turn to differential pushforwards for proper submersions. Let p : N → X be a
proper submersion between manifolds of relative dimension r, and assume it is equipped
with a differential stable normal G-structure g⊥p (Definition 2.4) on the relative tangent

bundle T (p). Take a representative g̃⊥p = (k, P,∇, ψ) of g⊥p . It induces a differntial stable
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G-structure on P ×Gk−r Rk−r which we denote gP , represented by g̃P = (k − r, P,∇, id).
By Proposition A.9 we have a differential Thom class whose homotopy class [ν̂(gP )] is
canonically determined,

ν̂(gP ) ∈ Êk−rprop/N (P ×Gk−r Rk−r) (A.12)

If we stabilize k to k+1, the homotopy classes of (A.11) are related as Proposition A.9 (2).
Now, choose an embedding ι : N ↪→ Rk×X over X (i.e., prX ◦ι = p) for k large enough,

a tubular neighborhood W of N in Rk × X with a vector bundle structure W → N so
that it is a map over X (this is possible because p is a submersion). Replacing k larger
if necessary, choose an isomorphism ψW : W ' P ×Gk−r Rk−r of vector bundles over N

so that the isomorphism (P ×Gk−r Rk−r) ⊕ T (p)
ψ−1
W ⊕id
−−−−−→ W ⊕ T (p) ' Rk is homotopic

to ψ. The isomorphism ψW induces a differential stable G-structure gW on W , and the
element (A.12) induces a differential Thom class on (W, gW ) denoted by

ν̂(gW ) := ψ∗W ν̂(gP ) ∈ Êk−rprop/N (W ). (A.13)

We consider the composition,

Ên(N)
·ν̂(gW )−−−−→ Ên+k−r

prop/N (W )
ι∗−→ Ên+k−r

prop/X(Rk ×X)
desusp−−−−→ Ên−r(X), (A.14)

where the first map uses the module structure of the properly supported Ê, and the
middle arrow is induced by the open embedding W ↪→ Rk ×X.

Proposition A.15. The composition (A.14) only depends on the differential stable nor-
mal G-structure g⊥p on T (p).

Proof. The above procedure includes the following ambigiuities : the choice of ν̂(gP )
representing [ν̂(gP )] and the choice of the data of embedding with a tubular neighbor-
hood and an isomorphism ψW . The independence on ψW directly follows from the last
statement of Proposition A.9.

First we show the independence on the choice of ν̂(gP ), with the other data fixed. Since
its homotopy class [ν̂(gP )] is fixed by Proposition A.9, any two choices ν̂i(gP ), i = 0, 1,

are connected by a homotopy ν̂I ∈ Êk−rprop/(I×N)(I × (P ×Gk−r Rk−r)). Its pullback by ψW
gives a homotopy ν̂I×W := ψ∗W ν̂I between the corresponding differential Thom classes on
(W, gW ). Denote the inclusion by it : N ' {t} × N ↪→ I × N for t = 0, 1. Consider the
following commutative diagram,

Ωn(I ×N ;V •E)
∧R(ν̂I×W )// Ωn+k−r

prop/(I×N)(I ×W ;V •E)

∫
(I×W )/(I×X) // Ωn−r(I ×X;V •E)

∫
(I×X)/X// Ωn−r−1(X;V •E)

a

��
Ên(I ×N)

·ν̂I×W //

R

OO

Ên+k−r
prop/(I×N)(I ×W )

(desusp)◦(idI×ι)∗ //

R

OO

Ên−r(I ×X)

R

OO

i∗1−i
∗
0 // Ên−r(X)

.

(A.16)
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The commutativity of the middle square is because the vector bundle structure W → N
is a map over X. The commutativity of the right square is by the homotopy formula
([BS10, Lemma 1]).

Take any element ê ∈ Ên(N). Then the image of pr∗N ê ∈ Ên(I × N) under the
composition of the bottom arrows in (A.16) is equal to the difference of the elements

in Ên−r(X) obtained by applying to ê the composition (A.14) using ν̂0(gP ) and ν̂1(gP ).
By the commutativity of (A.16), it is enough to check that the element R(pr∗N ê) ∈
Ωnclo(I ×N ;V •E) maps to zero under the composition of the top arrows in (A.16). Indeed,
since W → N is a map over X, we can factor the upper middle horizontal integration in
(A.16) on I ×N , and the result is equal to∫

(I×X)/X

∫
(I×N)/(I×X)

pr∗NR(ê) ∧
∫

(I×W )/(I×N)

R(ν̂I×W ), (A.17)

and by (recall (A.5))∫
(I×W )/(I×N)

R(ν̂I×W ) = Td(ν̂I×W ) = pr∗NTd(ν̂0(gP )),

so (A.17) is equal to ∫
(I×X)/X

pr∗X

∫
N/X

R(ê) ∧ Td(ν̂0(gP )) = 0,

as desired. Thus we conclude that, fixing the data of an embedding with a tubular
neighborhood, the composition (A.14) only depends on the homotopy class [ν̂(gP )].

Now consider the stabilization of the embeddings, increasing k to (k + 1) and W to
R ⊕W . By the condition (2) in Proposition A.9 and the result so far, we also conclude
that the composition (A.14) is invariant under this stabilization.

The desired independence of (A.14) on the remaining choices is also proved in a parallel
way, by choosing corresponding objects on the cylinder so that they restrict to stabiliza-
tions of the given ones on the endpoints. This completes the proof of Proposition A.15.

�

Thus we define the following.

Definition A.18. Let p : N → X be a proper submersion of relative dimension r,
equipped with a differential stable normal G-structure g⊥p on the relative tangent bundle
T (p). We define the differential pushforward map,

(p, g⊥p )∗ : Ên(N)→ Ên−r(X)

to be the composition (A.14). This does not depend on any choices by Proposition A.15.
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By the construction, the following diagram commutes.

Ωn−1(N ;V •E)/im(d)
a //

∫
N/X

−∧cw
g⊥p

(ch(G))

��

Ên(N)

(p,g⊥p )∗
��

I //

R

))
En(N)

(p,g⊥,topp )∗

��

Ωnclo(N ;V •E)

∫
N/X

−∧cw
g⊥p

(ch(G))

��
Ωn−r−1(X;V •E)/im(d)

a // Ên−r(X)
I //

R
55

En−r(X) Ωn−rclo (X;V •E)

.

(A.19)

In this sense, Definition A.18 refines the pushforwards on E∗ and Ω∗(−;V •E).
An important property of differential pushforwards is the Bordism formula [Bun13,

Problem 4.235], which says that if we have a bordism (W, g⊥W ) : (M−, g
⊥
−) → (M+, g

⊥
+),

the differential pushforwards at the boundary can be computed by the integration of the
characteristic form on the bordism. Its normal variant is stated in the form we use in this
paper as Fact 3.12. To prove it, we need to consider differential pushforwards for proper
maps which is not submersions, namely boundary defining functions W → I. The result
easily follows by the homotopy formula ([BS10, Lemma 1]). For the details of the proof
we refer [Bun13, Problem 4.235].

A.2. Differential pushforwards in Hopkins-Singer’s differential exten-
sions

Now we turn to the Hopkins-Singer’s differential extensions. As we explain, the defini-
tion of differential pushforwards in [HS05] differs from the one in Subsection A.3. In this
subsubsection, we clarify their relation in the settings of our interest (Proposition A.33).

Fix fundamental cocycles ιE ∈ Z0(E;V •E) and ιMG ∈ Z0(MG;V •MG) for E and MG,

respectively. Since E is rationally even, the Hopkins-Singer’s model Ê∗HS(−; ιE) admits a
canonical multiplicative structure by [Upm15]. We briefly explain it here. We only explain
the even-degrees. The remaining cases are induced by requiring the compatibility with
the S1-integration. Let n and m be even integers, and denote by µnm : En∧Em → En+m

a multiplication map. We need to choose a reduced cochain cnm ∈ C̃n+m−1(En∧Em;V •E)
so that

δcnm = ιn ∪ ιm − µ∗nmιn+m. (A.20)

Since E is rationally even, we have H̃n+m−1(En ∧ Em;V •E) = 0 by the proof of [BS10,
Lemma 3.8]. Thus any two choices of such cochains cnm differ by a coboundary. Using
cnm we get the map of differential function spaces ([HS05, Remark 4.17]),

(En ∧ Em; (ιE)n ∪ (ιE)m)M → (E; ιE)Mn+m, (A.21)

for any manifold M . Also choose a natural cochain homotopy B : Ωn(−) ⊗ Ωm(−) →
Cn+m−1(−) cobounding the difference between ∧ on forms and ∪ on singular cochains

91



M. Yamashita

as in [HS05, (3.8)], [Upm15, Section 6]. Any two such choices are naturally cochain
homotopic. It induces the map

(E; ιE)Mn × (E; ιE)Mm → (En ∧ Em; (ιE)n ∪ (ιE)m)M , (A.22)

for any M . Combining (A.21) and (A.22), we get the multiplication map,

· : ÊnHS(M ; ιE)⊗ ÊmHS(M ; ιE)→ Ên+m
HS (M ; ιE). (A.23)

This does not depend on any of the choices above. For a real vector bundle V → M , in
the same way we get a map using the properly supported differential functions ([HS05,
Section 4.3])

(E; ιE)Mn × (E; ιE)Vm → (E; ιE)Vn+m, (A.24)

which gives the module structure,

· : ÊnHS(M ; ιE)⊗ ÊmHS,prop/M (V ; ιE)→ Ên+m
HS,prop/M (V ; ιE). (A.25)

As we mentioned in Subsection 3.1, Hopkins-Singer’s normal differential BG-orientations
are defined in terms of differential functions to (MG; ιMG). A differential pushforward is
defined by fixing a map of differential function spaces

Ĝ :
(
MG−r ∧ (En)+;VG(ιMG)−r ∪ ιE

)
→ (E; ιE)n−r. (A.26)

whose underlying map factors as MG−r ∧ (En)+ G∧id−−−→ E−r ∧ (En)+ µ−r,n−−−−→ En−r. Here
VG : V •MG → V •E is induced by G, so that VG(ιMG) ∈ Z0(MG;V •E) represents ch(G). We
can take a cG ∈ C−1(MG;V •E) so that δcG = G∗ιE −VG(ιMG), and it is determined up to
coboundary because H−1(MG;V •E) = 0. We may take (A.26) to be the composition

Ĝ : (MG−r ∧ (En)+;VG(ιMG)−r ∪ (ιE)n)→ (E−r ∧ En; (ιE)−r ∪ (ιE)n)
(A.21)−−−−→ (E; ιE)n−r,

(A.27)

where the first map uses cG . Let V → M be a real vector bundle, and consider the
following diagram.

(MG; ιMG)V−r × (E; ιE)Mn //

��

(E; ιE)V−r × (E; ιE)Mn

��

(A.24)

))
(MG−r ∧ (En)+;VG(ιMG)−r ∪ (ιE)n)

V //

Ĝ

22(E−r ∧ En; (ιE)−r ∪ (ιE)n)V // (E; ιE)Vn−r

(A.28)

Here the top horizontal arrow uses cG , the left vertical arrow uses the cochain homotopy
B, and the remaining arrows are as before. The two triangles commute. The square does
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not commute on the level of differential function spaces, but we can easily check that the
difference is a coboundary so the induced maps on the differential cohomology level,

(M̂G)−rHS,prop/M (V ; ιMG)⊗ ÊnHS(M ; ιE)→ Ên−rHS,prop/M (V ; ιE) (A.29)

are the same. Using the top factorization of (A.28), we see that (A.29) factors as

(M̂G)−rHS,prop/M (V ; ιMG)⊗ ÊnHS(M ; ιE)→ Ê−rHS,prop/M (V ; ιE)⊗ ÊnHS(M ; ιE) (A.30)

·−→ Ên−rHS,prop/M (V ; ιE)

To put them into the picture in Subsection A.1, apply the discussions there in the case
E = MG and G = id: MG→MG. Assume that we have a proper submersion p : N → X
equipped with a differential stable normal G-structure g⊥p on the relative tangent bundle

T (p), represented by g̃⊥p = (k, P,∇, ψ). A Hopkins-Singer’s normal differential BG-

orientation ([HS05, Section 4.9.2]) g⊥,HS
p consists of choices of an embedding N ↪→ Rk×X

over X, a tubular neighborhood with a vector bundle structure W → N , an isomorphism
ψW : W ' P ×Gk−r Rk−r as in Subsection A.1 (in general W → N is not required to

be a map over X), and a lift of a classifying map for the induced G-structure (W, gtop
W )

on W → N to a differential function t(g⊥,HS
p ) : W → (MGk−r; (ιMG)k−r). Then, the

differential function t(g⊥,HS
p ) represents a differential Thom class for (W, gtop

W ),〈
t(g⊥,HS

p )
〉
∈ (M̂G)k−rHS,prop/N (W ; ιMG), (A.31)

where we denoted by 〈(c, h, ω)〉 the differential cohomology class represented by a differ-
ential function (c, h, ω). Now we define the following.

Definition A.32. Let p : N → X be a proper submersion between manifolds of relative
dimension r, and assume it is equipped with a differential stable normal G-structure g⊥p
on T (p). A Hopkins-Singer’s normal differential BG-orientation g⊥,HS

p is said to be a lift

of g⊥p if, in the notations above,

• The vector bundle structure W → N is a map over X, and
• The homotopy class

[〈
t(g⊥,HS

p )
〉]

of the differential Thom class
〈
t(g⊥,HS

p )
〉

is the
one associated to gW by Proposition A.9 (applied to E = MG).

In particular, this means that,

cwgW (ch(idMG)) = Td
(〈
t(g⊥,HS

p )
〉)

:=

∫
W/N

R
(〈
t(g⊥,HS

p )
〉)
.

where ch(idMG) ∈ H0(MG;V •MG).

Now assume we are given an element ê ∈ ÊnHS(N ; ιE). Then, in [HS05, Section 4.10]
the differential pushforward of ê is formulated as follows. Take a differential function
t(ê) : N → (E; ι)n representing ê. Apply the left bottom composition of (A.28) for
the vector bundle W → N to the pair (t(g⊥,HS

p ), t(ê)) to get a differential function in

(E; ιE)Wn+k−r. By the open embedding W ↪→ Rk × X we get a differential function in
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(E, ιE)R
k×X
n+k−r, and this represents the desired element (p, g⊥,HS

p )∗ê ∈ Ên−rHS (X; ιE). By
the discussion so far, the result is the same if we use the top right composition in (A.28),
and it is given by the composition (A.30). Then we see that the above definition of
(p, g⊥,HS

p )∗ê exactly translates into the definition of differential pushforwards (A.14) in
the Subsection A.1. Thus we conclude that

Proposition A.33. In the settings of Definition A.32, the differential pushforward map

(p, g⊥p )∗ : Ê∗HS(N ; ιE)→ Ên−rHS (X; ιE) in Definition A.18 applied to ÊnHS(−; ιE) coincides

with the differential pushforward map (p, g⊥,HS
p )∗ in [HS05] as long as we use g⊥,HS

p lifting

g⊥p .

A.3. The tangential case

Now we explain the tangential variants of the last Subsections A.1 and A.2. The
constructions and verifications are parallel to the normal case, so we go briefly.

In this case, we are given a homomorphism of ring spectra,

G : MTG→ E, (A.34)

where MTG is the Madsen-Tillmann spectrum. MTG is constructed as a direct limit of
Thom spaces of stable normal bundles to the universal bundles over approximations of
BGd’s, so classifies vector bundles with stable normal G-structures. Then for each real
vector bundle V of rank r over a topological space X equipped with a topological stable
normal G-structure g⊥,top, we get the Thom class ν ∈ Er(V ), whose multiplication gives
the Thom isomorphism E∗(X) ' E∗+r(V ).

We formulate the notion of differential Thom classes as a differential refinements of
the Thom classes, as well as differential forms Td(ν̂) and homotopies in the same way
as Definition A.3. By the exactly the same proof, the classification result of differential
Thom classes corresponding to Lemma A.6 also holds in the case here. The Chern-Dold
character for (A.34) is an element ch(G) ∈ H0(MTG;V •E). If V → M is equipped with
a stable normal G-structure g⊥, the characteristic form (A.8) is replaced by the form
cwg⊥(ch(G)), where we use the Chern-Weil construction in (2.9). Then, the same proof
as that of Proposition A.9 shows the following.

Proposition A.35. There exists a unique way to assign a homotopy class [ν̂(g⊥)] of

differential Thom classes ν̂(g⊥) ∈ ÊrankV
prop/M (V ) to every real vector bundle with differential

stable normal G-structure (V, g⊥)→M such that the following three conditions hold.

(1) It is compatible with pullbacks.
(2) We have

∫
R[ν̂(g⊥R⊕V )] = [ν̂(g⊥V )].

(3) We have cwg⊥(ch(G)) = Td([ν̂(g⊥)]) :=
∫
V/M

R(ν̂(g⊥)).

Moreover, the resulting homotopy class [ν̂(g⊥)] only depends on the homotopy class (Def-
inition 2.4 (4)) of differential stable normal G-structure g⊥.

Let p : N → X be a proper submersion between manifolds of relative dimension r,
equipped with a differential stable G-structure gp on the relative tangent bundle T (p)
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represented by g̃p = (d, P,∇, ψ). Choose an embedding ι : N ↪→ Rk × X over X for k
large enough, a tubular neighborhood W of N in Rk ×X with a vector bundle structure
W → N so that it is a map over X (this is possible because p is a submersion). Then we
get an isomorphism

ψW : (P ×Gd Rd)⊕W ' Rd−n ⊕ T (p)⊕W ' Rd−n+k (A.36)

of vector bundles over N . As a result, we get a differential stable normal G-structure
g⊥W on the vector bundle W → N , represented by g̃⊥W = (d − n + k, P,∇, ψW ). For g⊥W ,
Proposition A.35 assigns a differential Thom class whose homotopy class is canonically
determined,

ν̂(g⊥W ) ∈ Êk−rprop/N (W ). (A.37)

We consider the composition,

Ên(N)
·ν̂(g̃⊥W )−−−−→ Ên+k−r

prop/N (W )
ι∗−→ Ên+k−r

prop/X(Rk ×X)
desusp−−−−→ Ên−r(X). (A.38)

The following proposition can be shown in the same way as Proposition A.15.

Proposition A.39. The composition (A.38) only depends on the differential stable G-
structure gp on T (p).

Proposition A.39 allows us to define the following.

Definition A.40. Let p : N → X be a proper submersion between manifolds of relative
dimension r, equipped with a differential stable G-structure gp on the relative tangent
bundle T (p). We define the differential pushforward map,

(p, gp)∗ : Ên(N)→ Ên−r(X)

to be the composition (A.38).

Now we turn to the Hopkins-Singer’s models as in Subsection A.2. Take fundamental

cocycles ιE and ιMTG for E and MTG, respectively. As explained there, Ê∗HS(−; ιE)
admits a canonical multiplicative structure. In the normal case, a differential pushforward
is defined by a map of differential function spaces

Ĝ :
(
MTG−r ∧ (En)+;VG(ιMTG)−r ∪ ιE

)
→ (E; ιE)n−r. (A.41)

whose underlying map factors as MTG−r ∧ (En)+ G∧id−−−→ E−r ∧ (En)+ µ−r,n−−−−→ En−r. By
the same argument to the normal case, the map (A.41) induces the map of differential
cohomologies for any real vector bundle V →M ,

(M̂TG)−rHS,prop/M (V ; ιMTG)⊗ ÊnHS(M ; ιE)→ Ê−rHS,prop/M (V ; ιE)⊗ ÊnHS(M ; ιE) (A.42)

·−→ Ên−rHS,prop/M (V ; ιE).

Let p : N → X be a proper submersion between manifolds of relative dimension r,
equipped with a differential stable G-structure gp on the relative tangent bundle T (p) rep-
resented by g̃p = (d, P,∇, ψ). A Hopkins-Singer’s tangential differential BG-orientation
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gHS
p consists of choices of an embedding N ⊂ Rk×X, a tubular neighborhood W , a vector

bundle structure W → N as in the first part of this subsection (in general W → N is

not required to be a map over X), and a lift of a classifying map for (W, g⊥,top
W ) of the

induced normal structure to a differential function t(gHS
p ) : W → (MTGk−r; (ιMTG)k−r).

Then, the differential function t(gHS
p ) represents a differential Thom class for (W, g⊥,top

W ),〈
t(gHS

p )
〉
∈ (M̂TG)k−rHS,prop/N (W ; ιMTG). (A.43)

Now we define the following.

Definition A.44. In the above settings, Hopkins-Singer’s tangential differential BG-
orientation gHS

p is said to be a lift of gp if, in the notations above,

• the vector bundle structure W → N is a map over X, and
• the homotopy class

[〈
t(gHS

p )
〉]

of the differential Thom class
〈
t(gHS

p )
〉

is the one

associated to g⊥W by Proposition A.35 (applied to E = MTG).

In particular, this means that,

cwg⊥W
(ch(idMTG)) = Td

([
t(gHS

p )
])

:=

∫
W/N

R
([
t(gHS

p )
])
.

where ch(idMTG) ∈ H0(MTG;V •MTG).

Let us take ê ∈ ÊnHS(N ; ιE). By the same procedure as in the last paragraph of
Subsection A.2, the tangential variant of [HS05, Section 4.10] using the map (A.41) and

the open embedding W ↪→ Rk ×X produces the element (p, gHS
p )∗ê ∈ Ên−rHS (X; ιE). We

get

Proposition A.45. In the settings of Definition A.44, the differential pushforward map

(p, gp)∗ : ÊnHS(N ; ιE) → Ên−rHS (X; ιE) in Definition A.40 applied to Ê∗HS(−; ιE) coincides
with the tangential variant of the differential pushforward map (p, gHS

p )∗ in [HS05] as long

as we use gHS
p lifting gp.

Thus we conclude that the differential pushforward maps in Definition A.40 for Ê∗HS(−; ιE)
comes from maps between differential function spaces (A.41). As we mentioned in Foot-
note 3, this is the reason why we want to use the Hopkins-Singer’s formulation.
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