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L2 harmonic theory, Seiberg-Witten theory and
asymptotics of differential forms

Tsuyoshi Kato

Abstract. We present a pair of open smooth 4-manifolds that are mutually homeo-
morphic. One of them admits a Riemannian metric that possesses quasi-cylindricity,

and positivity of scalar curvature, and of dimension of certain L2 harmonic forms.

By contrast, for the other manifold, no Riemannian metric can simultaneously satisfy
these properties. Our method uses Seiberg-Witten theory on compact 4-manifolds

and applies L2 harmonic theory on non-compact, complete Riemannian 4-manifolds.

We introduce a new argument to apply Gauge theory, which arises from a discovery
of an asymptotic property of the range of the differential.

1. Introduction

It is a basic question to ask how a smooth structure influences the global Riemannian
structure of a smooth manifold X. The de Rham cohomology group is given a priori
by using a smooth structure on X, and is actually a topological invariant. If we set a
Riemannian metric g on X, where X is compact, then each element admits a harmonic
representative.

If X is non-compact, we obtain (un-)reduced L2 cohomology groups by using g. In
contrast to the compact case, these cohomology groups depend on the choice of complete
Riemannian metrics. It is well known that the reduced L2 cohomology group of (X, g) is
isomorphic to the space of L2 harmonic forms. So it would be interesting to ask how a
particular choice of smooth structure on X influences the structure of L2 harmonic forms
on X. Let us say that a closed differential form u ∈ Ω∗(X) is Lp exact at infinity, if there
is a compact subset K ⊂ X and a differential form α ∈ Ω∗−1(X\K) such that it is exact
outside K, with finite Lp norm ||α||Lp(X\K) <∞.

u|X\K = dα

The Lp-exactness was originally introduced by Gromov to study the Singer conjecture
[G]. In fact, it has been verified that if a compact Kähler manifold (M,ω) satisfies the

property that the lift ω̃ of the Kähler form on the universal covering space X := M̃ is
exact ω̃ = dα with ||α||L∞(X) < ∞, then the L2-Betti numbers all vanish except the

middle degree. Moreover the L2-Betti number at the middle degree does not vanishes.
In particular the Hopf conjecture holds, that states (−1)mχ(M) > 0, where χ is the Euler
characteristic and dimCM = m.
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The Singer conjecture has been applied to study of 4-dimensional differential topology
through Gauge theory. Furuta has verified 10/8-type inequality for a compact spin 4-
manifold [Fu]. Combining of a covering version of the Furuta’s 10/8-type inequality with
the Singer conjecture leads us to the aspherical 10/8-type inequality, that replaces the
self-dual Betti number in the Furuta’s inequality by the Euler characteristic (Section 1 in
[K2]). The covering version of the Furuta’s 10/8-type inequality is satisfied for compact
spin 4-manifolds with residually finite fundamental groups.

Let (X, g) be a complete Riemannian manifold, and take an exhaustion

K1 ⊂⊂ K2 ⊂⊂ · · · ⊂⊂ X
by compact subsets, where K ⊂⊂ L means that the interior L̊ contains K. Let us say
that the family {Ki}i is isometric-pasting, if there is ε > 0 and diffeomorphisms

φi : Ki
∼= Ki+1

such that the restrictions φi : Nε(∂Ki) ∼= Nε(∂Ki+1) are isometric, where Nε(∂Ki) ⊂ Ki

is an ε neighborhood.

Definition 1.1. (X, g) is quasi-cylindrical-end, if it admits an isometric-pasting family.

We have the following basic example.

Lemma 1.2. A Riemannian manifold with cylindrical-end is quasi-cylindrical-end.

Proof. X is isometric to a cylindrical-end manifold of the form X0 ∪ Y × [0,∞). Then,
we set Ki := X0 ∪Y × [0, i+ ε] with Nε(∂Ki) = Y × [i, i+ ε] for i ≥ 1. Let fi : [0, i+ ε]→
[0, i+1+ε] be a diffeomorphism with fi(t) = t for t ∈ [0, 1

2 ] and fi(t) = t+1 for t ∈ [i, i+ε].
Then fi extends to the desired diffeomorphism φi : Ki

∼= Ki+1. �

Scalar curvature is another basic invariant of complete Riemannian manifolds (X, g).
In particular, in the non-compact case, uniform positivity of the scalar curvature allows
us to construct a Fredholm theory of Dirac operators, and apply it to study the topology
of manifolds [GL2]. Note that there is a difference between the existence of positive and
flat scalar curvatures. For example any torus can admit a flat metric, but cannot admit
any metric of positive scalar curvature. In this paper, we treat an intermediate class that
consists of complete Riemannian manifolds with a positive scalar curvature that are not
assumed to be uniform. In our non-uniform case, we cannot expect to obtain a Fredholm
theory as above.

Let us use (∗) to denote if (X, g) satisfies the following conditions:

(∗)

{
(X, g) is quasi-cylindrical-end and has positive scalar curvature,

dim H+
e (X, g) > 0 is positive

where H+
e (X, g) is the space of self-dual L2 harmonic forms that are L2 exact at infinity.

In this paper we present a pair of smooth 4-dimensional open manifolds which have
the following characteristics.

2



L2 harmonic theory, Seiberg-Witten theory and asymptotics of differential forms

Theorem 1.3. There is a pair of oriented smooth 4-dimensional open manifolds X and
X ′ with the following properties:

(1) X and X ′ are mutually homeomorphic.

(2) X ′ admits a complete Riemannian metric with (∗).

(3) X cannot admit any complete Riemannian metric with (∗).

Our proof is based on a new approach to Seiberg-Witten theory based on the theory of
L2 harmonic forms over complete Riemannian 4-manifolds. Among the three conditions
(∗) as defined above, both quasi-cylindricity and positivity of scalar curvature are used
to conclude that a SW solution at the limit of metric deformation on X consists of a
zero spinor section. It allows us to apply L2 harmonic theory on complete Riemannian
manifolds.

Remark 1.4. Quasi-cylindricity is a differential-topological condition, and it is not
known whether X above admits such a structure. Note that quasi-cylindricity condi-
tion on X does not involve smooth embedding X ⊂ M . On the other hand in our case
in Theorem 1.3, there is a smooth embedding X ⊂M into a compact 4-manifold. Quasi-
cylindricity is used to guarantee two metric properties that (1) the scalar curvatures satisfy
a uniformly lower bound from below, and that (2) volumes of compact subsets M\X are
uniformly bounded from above, during metric deformation. Actually we can replace the
condition of quasi-cylindricity by the conclusions of metric properties in Lemma 4.1, if
we focus on an open 4-manifold X with a smooth embedding into a compact smooth
4-manifold M .

We believe that our method could still work without the above two conditions. We
conjecture that Theorem 1.3 can still hold (for the same example X and X ′ above), if we
replace the condition (∗) by

(∗′) dim H+
e (X, g) > 0 is positive.

To follow a parallel argument without such conditions, one will has to construct Seiberg-
Witten moduli theory over X. So far Gauge theory over end-periodic manifolds has
been extensively developed [T]. Our main result has been known under the stronger
assumption of end-periodic metrics. The end-periodic condition allows one to apply the
analytic method of the Taubes-Fourier transform by attaching the boundaries of the
building-block of the periodic-end, that consists of a compact 4-manifold. The analytic
setting gives a Fredholm theory of the linearized operators of the SW equations with
respect to the end-periodic metric. Even though a small perturbation can be applied to
the original end-periodic metric and still the Fredholm property is preserved, the analytic
mechanism essentially requires existence of an end-periodic metric. By contrast, in our
condition of quasi-periodicity, we have used two properties of metrics that touch essentially
on uniformity of estimates (see Remark 1.4). Hence, it would be quite difficult to extend
the techniques of end-periodic case, and apply it to our case. In particular, it is not easy
to construct moduli theory for any wider classes of open Riemannian 4-manifolds such as
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the quasi-cylindrical-end case. In such situations, the de Rham differentials do not have
closed range in general, and so the standard Fredholm property breaks. There has been
some partial progress in this direction [K3]. The quasi-cylindricity concerns existence
of asymptotically smooth exhaustion by a compact building-block subsets, whose overlap
widths are isometric. It would be of interest for us to ask whether an exotic R4 could admit
the asymptotically smooth exhaustion by a compact building-block subsets in our sense.

Our main analytic tool is given by the following Theorem. Let (X, g) be an oriented
complete Riemannian 4-manifold, and take an exhaustion K1 ⊂⊂ K2 ⊂⊂ · · · ⊂⊂ X by
compact subsets. We say that an element u ∈ L2(X; Λ∗) is an L2harmonic form, if it
satisfies the equations du = d∗u = 0. Corollary 2.10 verifies the following property.

Theorem 1.5. Suppose a non-zero L2 harmonic self-dual 2 form 0 6= u ∈ H+
e (X;R)

exists, which is L2 exact at infinity. Then there is no family ai ∈ Ω1(Ki) such that

(1) the convergence d+(ai)→ u holds in L2 on each compact subset, and

(2) the uniform bound ||d(ai)||L2(Ki) ≤ C <∞ holds.

Let us consider a basic case where (X, g) is a Riemannian 4-manifold with cylindrical-
end so that there is an isometry end(X) ∼= Y × [0,∞), where Y is a compact oriented
Riemannian three-manifold. The following Lemma is well known (see Proposition 2.12).

Lemma 1.6. Assume that Y is a rational homology sphere. Then the following spaces
of (X, g) are all isomorphic:

• The unreduced self-dual L2 cohomology group.
• The reduced self-dual L2 cohomology group.
• The space of self-dual L2 harmonic forms.
• The self-dual de Rham cohomology group.

See Definition 2.3 below. Recall that for a compact oriented Riemannian 4-manifold M ,
the self-dual de Rham cohomology group is defined by the cokernel of d : Ω1(M) →
Ω+(M) in Ω+(M), where Ω+(M) is the space of self-dual smooth 2-forms and Ω1(M) is
the space of smooth 1-forms on M .

Our example of the pair (X,X ′) in Theorem 1.3 satisfies the following properties.

• Both X and X ′ can be smoothly embedded into a compact smooth 4-manifold
S := S2 × S2 ] S2 × S2 ] S2 × S2.

• X ′ is given by the complement of one point X ′ := S\pt.
• There is a closed set that is homeomorphic to the 4-dimensional closed disc D

with X := S\D.

Let us equip X ′ above with a cylindrical-end metric g′, and verify that (X ′, g′) satisfies
the required properties in Theorem 1.3.
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Lemma 1.7. [GL1] Let N,N ′ be compact manifolds of dimension n ≥ 3. Assume they
admit metrics of positive scalar curvature. Then,

(1) their connected sum N]N ′ also admits a metric of positive scalar curvature, and
(2) N\pt also admits a cylindrical-end metric of positive scalar curvature.

Proof. See [GL1] pages 425− 429. �

S2×S2 admits a metric of positive scalar curvature. Thus S = S2×S2 ] S2×S2 ] S2×S2

also admits a metric of positive scalar curvature by Lemma 1.7 (1). Then X ′ := S\pt
admits a cylindrical-end metric g′ of positive scalar curvature by Lemma 1.7 (2).

Since the self-dual de Rham cohomology group on S is non-zero, the self-dual L2

cohomology group on X ′ is also non zero by Lemma 1.6. It follows from Proposition
2.12 that any self-dual L2 harmonic form on a cylindrical-end 4-manifold is L2 exact at
infinity, if the cross section is a rational homology sphere. Thus with Lemma 1.2, we have
verified that (X ′, g′) possesses the required properties in Theorem 1.3.

Let us roughly describe our strategy for the rest of the proof of Theorem 1.3. It is
well known that the Seiberg-Witten invariant is invariant under any choice of generic
Riemannian metrics. In particular, a solution exists for any metric, if the invariant is
non-zero. Let M be the K3 surface. It satisfies two remarkable properties:

(1) It admits a spin structure and the SW invariant is non-zero with respect to the
spin structure (see [M]).

(2) M has an open subset X ⊂M that is diffeomorphic to S\D as above (see [FU]).

The second property arises from Casson-Freedman theory [Fr], which has a very dif-
ferent aspect from the former one. Our argument uses a family of Riemannian metrics
on M that converges to a complete Riemannian metric g on X on each compact subset.
There is a family of perturbed SW solutions with respect to these metrics, and we study
the asymptotic behavior of this family of solutions. We apply the following idea. Let
us choose an exhaustion K0 ⊂⊂ K1 ⊂⊂ · · · ⊂⊂ X by compact subsets with a family of
Riemannian metrics hi on M with hi|Ki = g|Ki. Since the SW invariant is non zero,
there are solutions to the perturbed SW equation with respect to hi. Passing through a
limiting procedure, one should be able to obtain a solution to the perturbed SW equation
over (X, g). However L2 harmonic theory excludes such a situation.

Because our argument is quite general, we can obtain more examples which satisfy the
conclusion of Theorem 1.3 for any simply connected spin 4-manifold M with a non-zero
Seiberg-Witten invariant with respect to the spin structure.

The prototype of the argument of such a limiting process was given for the class of
manifolds with cylindrical-end. In particular, one can verify the fact that a K3 surface
does not admit smoothly connected-sum decomposition in which the homology of one
side corresponds to the E8-summand of H2(M ;Z) [DK]. This result is based on the
construction of moduli theory over cylindrical-end 4-manifolds.

5



KATO

If one tries to apply the same argument for more general classes of open Riemannian 4-
manifolds, a striking difficulty appears that at limit, the solution is generally far from L2.
This essentially comes from the fact that the L2 de Rham differential does not have closed
range in general. However, as far as we know, our result is first for a metric property in
the situation where even linear Fredholm theory cannot be applied.

2. L2 harmonic forms

Let (X, g) be a complete Riemannian 4-manifold.

2.1. De Rham differential

We start by observing the following basic property. For simplicity of the argument,
we assume that end(X) is homeomorphic to [0,∞)× S3. Let H∗c (X;R) be the de Rham
cohomology with compact support. We also use the notation Ω∗(X) := C∞(X; Λ∗). If
X0 is a manifold with boundary, then Ωpc(X0) is the space of compactly supported smooth
p-forms that vanish on the boundary.

Lemma 2.1. Suppose that an element [u] ∈ H2
c (X;R) satisfies the positivity condition∫

X
u ∧ u > 0. Then there are no families al ∈ Ω1(X) such that the convergence

d(al)→ u

holds in C∞ on each compact subset.

Proof. Consider an embedded Riemann surface Σ ⊂ X which represents a Poincaré dual
class to u (see [BoT], page 44). Suppose such a family {al}l exists. Then by Stokes’
theorem, the convergence

0 <

∫
X

u ∧ u =

∫
Σ

u

=

∫
Σ

(u− d(al)) +

∫
Σ

d(al) =

∫
Σ

(u− d(al))→ 0

must hold, which cannot happen. �

Let

d+ : L2
1(X; Λ1)→ L2(X; Λ+)

be the composition of the differential with the projection of two forms to the self-dual
part. We refer to this as the self-dual differential. The above argument heavily depends
on the Stokes theorem, and it cannot be directly applied to the self-dual differential in
general. However, a parallel argument can still work for a certain L2 harmonic form.
An element u ∈ L2(X; Λ+) is called an L2harmonic self-dual 2 form, if it satisfies the
equations

du = d∗u = 0.

One can obtain L2 harmonic self-dual 2-forms in the following way.
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Lemma 2.2. Let k ≥ 1. Suppose d+ : L2
k(X; Λ1) → L2

k−1(X; Λ+) has closed range.

Then, any element in the co-kernel space can be represented by an L2 harmonic self-dual
2-form.

Note that d+ does not always have closed range if (X, g) is non-compact.

Definition 2.3. (1) The unreduced self-dual L2 cohomology group is given by

L2(X; Λ+)/d+(L2
1(X; Λ1)).

(2) The reduced self-dual L2 cohomology group is given by

H+(X, g) := L2(X; Λ+)/d+(L2
1(X; Λ1))

where the notation − denotes the closure.

(3) We denote by H+(X, g) the space of L2 harmonic self-dual 2-forms.

Lemma 2.4. The inclusion H+(X, g) ↪→ L2(X; Λ+) induces an isomorphism
H+(X, g) ∼= H+(X, g).

Proof. This is well known. �

2.2. Asymptotics of the differential image

Let us introduce a method of cut-off function, whose idea has appeared in [G]. The
author is thankful to M. Furuta for discussion on how to use a family of a cut-off functions,
instead of boundary integrals. Let Ki ⊂⊂ Ki+1 ⊂⊂ · · · ⊂⊂ X be an exhaustion by
compact subsets, and take cut-off functions

χi : X → [0, 1]

with χi|Ki−1 ≡ 1 and χi|(Ki)
c ≡ 0 such that

lim
i→∞

||dχi||L∞(X) = 0

holds. Such a family of cut-off functions exists when (X, g) is non-compact and complete.

Lemma 2.5. Suppose a non-zero L2 harmonic self-dual 2-form

0 6= u ∈ H+(X;R)

exists. Then, there is no sequence ai ∈ Ω1(Ki) with uniform bound

||ai||L2
1(Ki) ≤ c <∞

such that the convergence

d+(al)→ u = u+

holds in L2 norm on each compact subset.

Remark 2.6. One can replace ai ∈ Ω1(Ki) by ai ∈ Ω1
c(X) by using suitable cut-off

functions, and the same conclusion holds under the same conditions. This is also the case
in Theorem 2.9 and Corollary 2.10
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Proof. Step 1: Suppose the sequence exists. For any δ > 0, there is a compact subset
K ⊂ X such that ||u||L2(Ki\K) ≤ ||u||L2(X\K) < δ hold for all large i.

By contrast, there is i0 such that for any i ≥ i0,

||u− d+ai||L2(K) < δ

also holds. Then, the following equalities hold:∫
Ki

u ∧ d+ai =

∫
K

u ∧ d+ai +

∫
Ki\K

u ∧ d+ai

=

∫
K

u ∧ (d+ai − u) +

∫
K

u ∧ u+

∫
Ki\K

u ∧ d+ai

=

∫
K

u ∧ (d+ai − u) + ||u||2L2(K) +

∫
Ki\K

u ∧ d+ai.

By the Cauchy-Schwartz inequality, both the estimates

|
∫
K

u ∧ (d+ai − u)| ≤ δ||u||L2(K),

|
∫
Ki\K

u ∧ d+ai| ≤ δ||d+(ai)||L2(Ki\K)

hold. Hence the following statement holds: for any δ > 0, there is i0 and a compact
subset K ⊂ X such that for all i ≥ i0, the estimates

|
∫
K

u ∧ d+ai − ||u||2L2(X) | < δ,

|
∫
Ki\K

u ∧ d+ai| < δ

hold. Hence uniform positivity holds:∫
Ki

u ∧ d+ai > ||u||2L2(K) − 2δ > 0.

Step 2: One may assume K ⊂ Ki−1 by choosing large i. Then consider the equalities∫
Ki

u ∧ d+ai =

∫
Ki

u ∧ dai =

∫
Ki

u ∧ d(χiai) +

∫
Ki

u ∧ d(1− χi)ai

=

∫
Ki

d(u ∧ χiai) +

∫
Ki\Ki−1

u ∧ d(1− χi)ai

=

∫
Ki\Ki−1

u ∧ d(1− χi)ai.
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Then the estimates hold:

|
∫
Ki\Ki−1

u ∧ d(1− χi)ai| ≤ ||u||L2(Ki\Ki−1)||ai||L2
1(Ki\Ki−1)

≤ c||u||L2(Ki\Ki−1).

Right-hand side can be arbitrarily small as u ∈ L2(X; Λ+). This contradicts Step 1. �

Remark 2.7. The condition on ai is too strong for our later purpose, and in Corollary
2.10 below, we use a weaker condition on ai assuming a stronger one on u.

Lemma 2.8. Suppose an L2 harmonic self-dual 2-form u ∈ H+(X;R) exists, which is
exact at infinity so that u = dα holds on the complement of a compact subset K ⊂ X for
some α ∈ Ω1(X\K). Then any a ∈ Ω1

c(X\K) satisfies vanishing∫
X

u ∧ d+a = 0.

Proof. We have the equality ∫
X

u ∧ d+a =

∫
X

u ∧ da

since u is self-dual. By the assumption,

u|X\K = dα

holds for some α ∈ Ω1(X\K). Then,∫
X

u ∧ da =

∫
X\K

dα ∧ da.

Choose a compactly supported cut-off function ϕ : X → [0, 1] with

ϕ|K ≡ 0, ϕ| supp a ≡ 1.

Then, we have the equalities∫
X\K

dα ∧ da =

∫
X\K

d(ϕα) ∧ da =

∫
X

d(ϕα) ∧ da =

∫
X

d(ϕα ∧ a) = 0.

These equalities are combined to obtain the conclusion. �

The following Theorem requires no uniform bound on the values of the L2 norm of ai.

Theorem 2.9. Fix 1 ≤ p, q ≤ ∞ with p−1 + q−1 = 1. Suppose u ∈ H+(X;R) is a
non-zero L2 harmonic self-dual 2-form that is also in Lp ∩Lq and is Lp exact at infinity.
Then there is no sequence ai ∈ Ωp(Ki) such that

(1) uniform bound ||d(ai)||Lq(Ki) ≤ C <∞ holds, and

(2) convergence d+(ai)→ u = u+ holds in Lq norm on each compact subset.
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Proof. Step 1: Suppose such a sequence exists. Let us fix i0 and choose arbitrarily small
δ > 0. Then we obtain the estimates∫

Ki0

u ∧ d+(ai) = ||u||2L2(Ki0 ) +

∫
Ki0

u ∧ (d+(ai)− u)

≥ ||u||2L2(Ki0 ) − ||u||Lp(Ki0 )||d+(ai)− u||Lq(Ki0 )

≥ ||u||2L2(Ki0 ) − δ > 0.

if i > i0 is sufficiently large.

Step 2: Since the estimates

|
∫
Ki\Ki0

χiu ∧ d+ai| ≤ ||χiu||Lp(Ki\Ki0 )||d+ai||Lq(Ki\Ki0 )

< δ||d+ai||Lq(Ki\Ki0 ) ≤ Cδ

hold, we obtain positivity∫
Ki

χiu ∧ d+ai =

∫
Ki0

u ∧ d+ai +

∫
Ki\Ki0

χiu ∧ d+ai >

∫
Ki0

u ∧ d+ai − Cδ > 0

by Step 1. On the other hand consider the equalities∫
Ki

χiu ∧ d+ai =

∫
X

χiu ∧ dai =

∫
X

d(χiu ∧ ai)−
∫
X

dχi ∧ u ∧ ai

= −
∫

Supp dχi

dχi ∧ u ∧ ai = −
∫

Supp dχi

dχi ∧ dα ∧ ai

=

∫
Supp dχi

d(dχi ∧ α ∧ ai)−
∫

Supp dχi

dχi ∧ α ∧ dai

= −
∫

Supp dχi

dχi ∧ α ∧ dai

by Stokes’ theorem. Then, we have the estimates

|
∫

supp dχi

dχi ∧ α ∧ dai| ≤ ||dχi||L∞(X)||α||Lp(supp dχi)||dai||Lq(supp dχi)

which is arbitrarily small for large i. This is a contradiction. �

In particular, we have the following Corollary by setting p = q = 2.

Corollary 2.10. Suppose u ∈ H+
e (X;R) is a non-zero L2 harmonic self-dual 2-form that

is L2 exact at infinity. Then there is no sequence ai ∈ Ω1(Ki) such that

(1) the convergence d+(ai)→ u holds in the L2 norm on each compact subset, and

(2) there is a uniform bound ||d(ai)||L2(Ki) ≤ C <∞.
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Corollary 2.11. Suppose u ∈ H+
e (X;R) is a non-zero L2 harmonic self-dual 2 form that

is L2 exact at infinity with u = dα outside of K ⊂⊂ X. Then there exists a compactly
supported 2-form v ∈ Ω2

c(X) such that the following property holds. There is no sequence
ai ∈ Ω1(Ki) such that

(1) the convergence d+(ai)→ v+ holds in L2 norm on each compact subset, where v+

is the projection to the self-dual part of v, and

(2) a uniform bound ||d(ai)||L2(Ki) ≤ C <∞ holds.

Proof. Let χ ∈ C∞(X) be a cut-off function which is 1 near infinity and vanishes on K.
Then α′ := χ · α ∈ L2(X; Λ1) ∩ Ω1(X) satisfies dα′ ≡ u on a complement of a compact
subset. Then we can conclude that there is no family a′i ∈ Ω1(Ki) with uniformly bounded
norms ||da′i||L2(Ki) ≤ C such that the convergence

d+(a′i)→ v+ := pr+(u− dα′) = u− d+α′

holds in the L2 norm on each compact subset, where pr+ is the projection to the self-dual
part. If there were such a family, then

ai := a′i + α′

would satisfy the conditions (1) and (2) in Corollary 2.10. �

2.3. Atiyah-Hitchin-Singer complexes over cylindrical-end manifolds

The Atiyah-Hitchin-Singer (AHS) complex is an elliptic differential complex over a
Riemannian 4-manifold X

0 −→ L2
k+1(X, g)

d−→ L2
k((X, g); Λ1)

d+−→ L2
k−1((X, g); Λ2

+) −→ 0

between Sobolev spaces, where d+ is the composition of the differential with the projection
to the self-dual 2-forms. Here k ≥ 1. Note that H0 = 0 always holds when X is connected
and non-compact. Recall that an element in the second reduced L2 cohomology group
admits a harmonic representative by Lemma 2.4.

Suppose end(X) is isometric to the product Y × [0,∞) so that g = g′+dt2 on the end,
where (Y, g′) is a closed Riemannian three-manifold. Such a space is called a cylindrical-
end manifold.

Let us fix a small and positive µ > 0. Then we set

τ : Y × [0,∞) 7→ [0,∞), τ(m, t) = µt

and extend it to a function τ : X → [0,∞) that coincides with τ(m, t) on end(X). Then,
we define the weighted Sobolev k norm on X by

||u||L2
k,µ

= (
∑
l≤k

∫
X

exp(τ)|∇lu|2 )
1
2 .
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We can denote by L2
k,µ the completion of C∞c (X) with respect to the norm, because the

isomorphism class of the function space depends only on µ > 0, rather than τ itself.
Then we have the weighted AHS complex

0 −→ L2
k+1,µ(X)

d−→ L2
k,µ(X; Λ1)

d+−→ L2
k−1,µ(X; Λ2

+) −→ 0.

Let us identify the orthogonal complement of the image of d+ with the space of the
cokernel, and take an element u ∈ L2

k−1,µ(X; Λ+) in the cokernel of d+. Then u satisfies
the equality

0 = (d+)∗τ (u) := exp(−τ)(d+)∗(exp(τ)u),

and hence (d+)∗(exp(τ)u) = 0 holds.

Note that the de Rham cohomology H2(end(X);R) = 0 vanishes on the end, if and
only if Y is a rational homology sphere. The following property is well known.

Proposition 2.12. [K1] Suppose Y is a rational homology sphere. Then for any small
µ > 0,

exp(τ)u ∈ L2(X; Λ+)

holds for any element u ∈ L2
k−1,µ(X; Λ+) in the orthogonal complement of the image of

d+. Moreover, exp(τ)u is L2 exact at infinity.

See also [K3].

3. Seiberg-Witten theory and scalar curvature

Let us quickly review Seiberg-Witten theory over compact 4-manifolds [M].

3.1. Seiberg-Witten map over compact 4-manifolds

Let V be a real 4-dimensional Euclidean space, and consider the Z2-graded Clifford
algebra Cl(V ) = Cl0(V )⊕Cl1(V ). Let S be the unique complex 4-dimensional irreducible
representation of Cl(V ). Then, for any vector v ∈ S+, we set

σ(v) ≡ v ⊗ v∗ − |v|
2

2
id ∈ ∧2

+(V )⊗ iR.

One can apply it to the cotangent bundle of a compact Riemannian 4-manifold on each
fiber. Let (M,h) be an oriented compact Riemannian 4-manifold equipped with a spinc

structure L. Let S± and L be the spinor bundles and the determinant bundle respectively.
Let A0 be a smooth U(1) connection on L. With a Riemannian metric on M , A0 induces
a spinc connection and the associated Dirac operator DA0

on S±. Fix a large k ≥ 2, and
consider the configuration space

D = {(A0 + a, ψ)| a ∈ L2
k(M ; Λ1 ⊗ iR), ψ ∈ L2

k(M ;S+)}.

12
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Let u ∈ C∞(M ; Λ+) be a smooth self-dual 2-form. Then we have the perturbed
Seiberg-Witten map

SWu : D→ L2
k−1(M ;S− ⊕ Λ2

+ ⊗ iR),

(A0 + a, ψ)→ (DA0+a(ψ), F+
A0+a − σ(ψ)− iu).

Note that the space of connections is independent of choice of A0 as long as M is compact.
Let ∗ ∈M be any fixed point, and G∗(M) := L2

k+1(M ;S1)∗ be the L2
k+1-completion of

{u ∈ C∞(M,S1)| u(∗) = 1},

which acts on both D and L2
k−1(M ;S−⊕Λ2

+⊗iR). The action of the gauge transformation
u ∈ G∗(M) on the spinors are the complex multiplication, and on a 1-form is given by

a→ a− 2u−1du.

The action is trivial on self-dual 2-forms. The map SWu is equivariant with respect to
the G∗(M) actions, and hence the gauge group acts on the zero set

M̃((M,h), u) := {(A0 + a, ψ) ∈ D| SWu(A0 + a, ψ) = 0}.

Moreover the quotient space B0 ≡ D/G∗(M) is Hausdorff. The based and perturbed
Seiberg-Witten moduli space is given by the quotient space

M∗((M,h), u) := M̃((M,h), u)/G∗(M).

A connection A0 +a with a ∈ L2
k(M ; Λ1⊗iR) can be gauge transformed so that it satisfies

Ker d∗(a) = 0. Such a gauge transformation is unique, since it is based. Then the slice
map is given by the restriction

SWu : (A0 + Ker d∗)× L2
k(M ;S+)→ L2

k−1(M ;S− ⊕ Λ2
+ ⊗ iR).

We consider the zero set

M0((M,h), u) := SW−1
u (0) ∩ {(A0 + Ker d∗)× L2

k(M ;S+)}.

The inclusion of the slice into the configuration space descends to an S1-equivariant home-
omorphism from the slice version M0((M,h), u) to the quotient version M∗((M,h), u).

Definition 3.1. The Seiberg-Witten invariant is defined by counting the algebraic num-
ber of the oriented space

SW (M,L) := ] M((M,h), u) ∈ Z

for a generic choice of perturbation.

It is independent of choice of perturbation and Riemannian metric, and hence is a
smooth invariant.

13
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3.2. Scalar curvature

Let M be a compact spin 4-manifold, and h be a Riemannian metric on M . Then take
a solution (φ,A = ∇+ a) to the SW equation perturbed by v+ with respect to (M,h).

Proposition 3.2. Given constants C, δ > 0, there is a constant c such that the following
holds: Suppose there is a compact subset K ⊂ M such that the scalar curvature κ on
(M,h) is bounded from below as

κ ≥ −C.
(1) If non-negativity

κ|M\K ≥ 0

holds on the complement of K, then there is a constant c > 0 determined by v+, C and
volK such that the following uniform bound holds:

||φ||L4(M,h), ||da||L2(M,h) ≤ c.
(2) If the uniform positivity

κ|M\K ≥ δ > 0

holds on the complement of K, then there is a constant c > 0 determined by C, δ, v+ and
volK such that the uniform bound

||φ||L2(M,h) ≤ c
holds, in addition to the estimates in (1).

Let X ⊂M be an open subset. Then by restriction, one obtains the estimates

||φ||L4(X,h), ||da||L2(X,h) ≤ c
and

||φ||L2(X,h) ≤ c
respectively.

Proof. One may assume that support of v+ lies in K, by replacing K with K ∪ supp v+,
if necessarily. It follows from the Weitzenböck formula

D2
A(φ) = ∇∗A∇A(φ) +

κ

4
φ+

FA
2
φ

that the equality

0 = ||∇A(φ)||2L2(M) +

∫
M

κ

4
|φ|2 vol +

∫
M

<
FA
2
φ, φ > vol

holds. From the SW equations, we have the equalities

< FAφ, φ > =< F+
A φ, φ >

=< (F+
A − σ(φ)− iv+) · φ+ (σ(φ) + iv+) · φ, φ >

=
|φ|4

2
+ < iv+ · φ, φ > .

14
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Then, we have the estimate

0 ≥
∫
K

κ

4
|φ|2 vol +

1

2

∫
K

< iv+ · φ, φ > +
1

4

∫
K

|φ|4 vol

+

∫
M\K

κ

4
|φ|2 vol +

1

4

∫
M\K

|φ|4 vol .

We have the estimate

|
∫
K

< iv+ · φ, φ > | ≤

√∫
K

|φ|4 · ||v+||L2(K) ≤ c

√∫
K

|φ|4.

Hence

−
∫
K

(κ+ |φ|2)
|φ|2

4
vol +c

√∫
K

|φ|4 ≥
∫
M\K

(κ+ |φ|2)
|φ|2

4
vol ≥ 0 (∗)

By the assumption with (∗) above, we have the estimates

C

∫
K

|φ|2 vol ≥
∫
K

−κ
4
|φ|2 vol ≥ 1

4

∫
K

|φ|4 vol−c

√∫
K

|φ|4.

Note the estimate ∫
K

|φ|4 vol ≥ vol(K)−1(

∫
K

|φ|2 vol)2

by Cauchy-Schwartz. Then, for x2 = 1
4

∫
K
|φ|4 vol,

x2 − cKx ≤ 0

holds for some cK > 0. Hence, we obtain the estimate

c2K ≥
1

4

∫
K

|φ|4 vol .

Combining these estimates, we obtain the estimate

cK
√

4 volK ≥
∫
K

|φ|2 vol .

Hence the left hand side of (∗) is bounded by some CK , and so we have the bound

CK ≥
∫
M\K

(
κ

4
|φ|2 + |φ|4) vol .

Combining these estimates, we obtain the uniform bound∫
M

|φ|4 vol ≤ c′K

in the case of (1). For (2), we also obtain the uniform bound
∫
M
|φ|2 vol ≤ c′K . Now the

uniform bound

||d+(a)||2L2(M) = ||F+
A ||

2
L2(M) ≤ ||φ||

4
L4(M) + ||v+||2L2(K) ≤ C

′
K

15
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holds by the equality F+
A = σ(φ) +

√
−1v+. Consider the topological invariant

0 = 4π2c1(L)2 =

∫
M

FA ∧ FA vol =

∫
M

|F+
A |

2 vol−
∫
M

|F−A |
2 vol .

Thus the following bound also holds:

||d−(a)||2L2(M) =

∫
M

|F−A |
2 vol =

∫
M

|F+
A |

2 vol ≤ C ′K .

Combining with the above, we obtain the bound ||da||L2(M) ≤ cK . �

Remark 3.3. (1) We have not assumed that the solution is gauge fixed; hence, we have
freedom of choice of solutions in its gauge equivalent class. (2) Later, we will apply
Proposition 3.2 with a family of Riemannian metrics hλ on M such that their restrictions
hλ|U coincide with each other on an open subset U ⊂ X ⊂ M (see Lemma 4.1 later).
Moreover, we choose perturbation v+ by a self-dual 2-form that is smooth and supported
inside U (see Corollary 2.11). Then, we can take K = (M\U) ∪ supp v+.

From an analytical perspective, we have the following Lemma in the case of uniformly
positive scalar curvature.

Lemma 3.4. [GL2] Suppose X is spin with a complete Riemannian metric (X.g). If the
scalar curvature κ is uniformly positive

κ|X\K ≥ δ > 0

on the complement of a compact subset K, then the Dirac operator D is Fredholm.

In our non-uniform case, we cannot expect to obtain such a conclusion. In fact, ul-
timately, we will not use Fredholm theory over a non compact manifold. Our use of
positivity is to guarantee vanishing of an L4 spinor section on a complete Riemannian
4-manifold (see Lemma 4.3 below).

4. Convergent process

4.1. Preparation

Let M be a compact oriented smooth 4-manifold, and X ⊂ M be an open subset
equipped with a complete Riemannian metric g on X. Choose an exhaustion

K0 ⊂⊂ K1 ⊂⊂ · · · ⊂⊂ Ki+1 ⊂⊂ · · · ⊂⊂ X

by compact subsets. We will later assume that X is simply connected and simply con-
nected at infinity. One may assume that the inclusion Ii : Ki ⊂ Ki+1 induces null
homomorphism on the fundamental groups

(Ii)∗ = 0 : π1(Ki)→ π1(Ki+1)

by replacing {Ki} by its subset {Kli}i for some subindices {li}i, if necessarily. This
property is used when we apply Corollary 4.4 below.

16
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Note that the quasi-cylindrical-end condition requires isometric-pasting condition (see
Definition 1.1). The latter condition is preserved, if one takes a subset {Kli}i as above.
Hence in Lemma 4.1 below, one can assume that the exhaustion {Ki}i simultaneously
satisfy the condition that the inclusions of the Ki induce null homomorphisms on funda-
mental groups.

Lemma 4.1. Suppose g is quasi-cylindrical-end with respect to the exhaustion above.
Then there is a family of Riemannian metrics {hi}i≥0 on M such that the following
properties hold for any i:

(1) hi|Ki ≡ g|Ki,
(2) vol (M\Ki, hi) ≤ c is uniformly bounded, and
(3) {hi}i≥0 is a family of Riemannian metrics on M such that their scalar curvatures

are uniformly bounded from below κhi ≥ −C.

Remark 4.2. (1) Note that if a Riemannian manifold (M, g) has positive scalar cur-
vature, then it is uniformly positive if M is compact. The same thing holds for a non-
compact Riemannian manifold, if g is cylindrical-end, or more generally end-periodic.
However, this property does not hold for the quasi-cylindrical-end case in general. (2) It
follows from the construction of the family of Riemannian metrics {hi}i≥0 on M that the
restriction (M\K0, hi) is isometric to (M\K0, h0).

Proof. Recall the notations in Definition 1.1 with the data ε > 0 and {φi : Ki
∼= Ki+1}i≥0.

We consider the isometries

Ψi := φi−1 ◦ · · · ◦ φ0 : Nε(∂K0) ∼= Nε(∂Ki).

For K ′0 := K0\Nε(∂K0), we glue the disjoint union

Mi := ( M \ K ′0 ) tΨi Ki

through the isometry Ψi. Note that Ψi is extended as a diffeomorphism

Ψi = φi−1 ◦ · · · ◦ φ0 : K0
∼= Ki.

Then, there is a diffeomorphism Ψi : M ∼= Mi by setting

Ψi(m); =

{
Ψi(m), m ∈ K0,

m, m ∈M \ K0.

Then, we define

hi(x) :=

{
g(x), x ∈ Ki,

h0(x), x ∈M\K0.

�

17
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4.2. Positivity of scalar curvature

Suppose X is spin with a complete Riemannian metric (X.g), and let ∇ be the spin
connection with the Dirac operator D.

Lemma 4.3. Let (X, g) be a quasi-cylindrical-end manifold and assume that the scalar
curvature is (not necessarily uniformly) positive κ > 0. Let (A, φ) be a solution to the SW
equations perturbed by a self-dual 2-form u ∈ Ω+

c (K0) with sufficiently small L∞ norm
||u||L∞ << 1. Then φ is actually zero, if φ ∈ L4((X, g);S+) ∩ L2

1,loc.

Proof. This is well known if φ ∈ L2
1((X, g);S+). Let us use the same notations as above.

Since each Nε(∂Ki) is isometric to Nε(∂K0), for any δ > 0, there is some i0 such that

||φ||L4(Nε(∂Ki)) < δ

holds for any i ≥ i0. By Cauchy-Schwartz, the following estimates hold:

||φ||L2(Nε(∂Ki)) ≤ Vol(Nε(∂Ki))
1
4 ||φ||L4(Nε(∂Ki)) < Vol(Nε(∂Ki))

1
4 δ.

Let χ ∈ C∞c (K0) be a cut-off function which vanishes near the boundary. Then, we define
χi ∈ C∞c (X) by

χi(x) =


0 x ∈ X\Ki,

(Ψ−1
i )∗(χ)(x) x ∈ Nε(Ki),

1 x ∈ Ki\Nε(Ki).

Since DA(φ) = 0, we have the equality

DA(χiφ) = dχi · φ+ χiDA(φ) = dχi · φ.
Hence

||DA(χiφ)||L2(X) ≤ C||φ||L2(Nε(Ki)) → 0

holds as i→∞. Then, by Weitzenböck formula we have the following equality:

||DA(χiφ)||2L2(X) =< D2
A(χiφ), χiφ >

=< ∇∗∇(χiφ), χiφ > +
κ

4
< χiφ, χiφ > +

∫
X

χ2
i |φ|4

4
+ < u · χiφ, χiφ >

= ||∇(χiφ)||2L2(X) +

∫
X

κ

4
|χiφ|2 +

∫
X

χ2
i |φ|4

4
+ < u · χiφ, χiφ >

≥ ||∇(χiφ)||2L2(X) +

∫
X

κ

4
|χiφ|2 +

∫
X

χ2
i |φ|4

4
− ||u||L∞ ||χiφ||2L2(K0)

≥ ||∇(χiφ)||2L2(X) +

∫
X\K0

κ

4
|χiφ|2 +

∫
X

χ2
i |φ|4

4
+ (κ0 − ||u||L∞)||χiφ||2L2(K0)

where κ0 := infx∈K0
κ(x) > 0. By the assumption, one may assume

inf
K0

κ ≥ ||u||L∞ .
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Hence, this implies the equality φ ≡ 0, since the left-hand side converges to zero as i→∞,
and the limit-inf of the right-hand side is at least 1

4 ||φ||
4
L4(X). �

4.3. Proof of Theorem 1.3

This subsection is devoted to giving a proof of the remainder of Theorem 1.3. First,
let us state a general result on differential forms on manifolds with boundary. Let X0

be a compact smooth manifold with boundary. Let us equip with a Riemannian metric
on X0, and let L2

l (X0; Λk) be the Sobolev l-space. Let Y0 ⊂ X0 be an embedding of a
compact submanifold with boundary that satisfies ∂Y0 ∩ ∂X0 = φ. The following result
is standard.

Lemma 4.4. Suppose the natural map π1(Y0) → π1(X0) is zero. Let η ∈ L2
1(X0; Λ1).

Then there is an exact form dµ′ ∈ L2
1(Y0; Λ1) such that

ω := η − dµ′ ∈ L2
1(Y0; Λ1)

satisfies the lower bound
||dω||L2(X0) ≥ c||ω||L2(Y0)

with d∗(ω) = 0.

This is based on Hodge theory on manifolds with boundary [S, W]. See also the
Appendix in [K3]. Let us give a proof of the remainder of Theorem 1.3.

Step 1: Let M be a K3 surface and denote X ′ := 3(S2 × S2)\pt.

Lemma 4.5. Let M be as above. Then there exists an open subset X ⊂M such that X
is homeomorphic to X ′, but is not diffeomorphic to the latter manifold with respect to the
induced smooth structure by the embedding X ⊂M .

Proof. Actually there is a topological decomposition M ∼= 2| −E8|]3(S2 × S2), and X is
obtained as an open subset of the complement of 2| − E8| term. See [FU], [DK]. �

Required properties have been given for X ′ in the introduction. We now focus on X.

The following is known (see [M]).

Lemma 4.6. The Seiberg-Witten invariant is non zero over M with respect to the spin
structure.

We shall deduce a contradiction, assuming that the above X admits a complete Rie-
mannian metric which satisfies the conditions (∗) in Theorem 1.3.

Step 2: Let (X, g) be a quasi-cylindrical-end Riemannian 4-manifold whose scalar cur-
vature is positive, and let us take any non zero L2 harmonic self-dual 2-form u on (X, g),
which is exact at infinity. Let v+ ∈ Ω+

c (K0) be the self-dual 2-form in Corollary 2.11.

Take a family of metrics hi on M as in Lemma 4.1. The (perturbed) SW invariant
is invariant for any choice of generic Riemannian metric and perturbation. Hence, there

19



KATO

is a solution to any metric hi and perturbation by Lemma 4.6. Let (Ai = ∇ + iai, φi)
be a solution to the perturbed SW equation by v+ with respect to (M,hi). It obeys the
equation

id+ai − σ(φi) =
√
−1v+.

Step 3: It follows from Proposition 3.2 (1) and Lemma 4.1 that there is a constant C
such that the uniform bounds

||φi||L4(Ki), ||dai||L2(Ki) ≤ C

hold.
Let us fix i0. It follows from Lemma 4.4 with Remark 3.3 that after gauge transform, the
estimates

||ai||L2(Ki0 ) ≤ Ci0 ||dai||L2(Ki0+1) ≤ C ′i0
hold for some constants Ci0 and C ′i0 , and i ≥ i0 + 1. Moreover one may assume the
gauge-fixing

d∗(ai) = 0.

Hence we obtain the L2
1 bound

||ai||L2
1(Ki0 ) ≤ C ′′i0

by the elliptic estimate.

Step 4: Since (Ai, φi) is a solution to the perturbed SW equation, the equality

0 = DAi(φi) = D(φi) + ai · φi
holds. Thus, we obtain the estimates

||D(φi)||L2(Ki0 ) ≤ ||ai · φi||L2(Ki0 ) ≤ ||ai||L4(Ki0 )||φi||L4(Ki0 )

≤ Ci0 ||ai||L2
1(Ki0 )||φi||L4(Ki0 ) ≤ C ′i0

using the Sobolev embedding L2
1,loc ↪→ L4

loc. Again by the elliptic estimate, we obtain the
uniform bound

||φi||L2
1(Ki0 ) ≤ Ci0 .

Step 5: It is well known that the perturbed SW solution admits an L∞ bound

||φi||L∞(M) ≤ sup
m∈M

max(0,−κi(m) + ||v+||L∞) ≤ C

(see [M] page 77, proof of Corollary 5.2.2). Since F+
Ai

= φi ⊗ φ∗i − 1
2 |φi|

2 id +
√
−1v+·

holds, the equality

∇F+
Ai

= ∇(φi)⊗ φ∗i + φi ⊗∇(φ∗i )− < ∇(φi), φi > id +
√
−1∇v+·

holds. Hence we have the estimates

||∇F+
Ai
||L2(Ki0 ) ≤ C||φi||L∞(M)||∇(φi)||L2(Ki0 ) + ||∇v+||L2(K0) ≤ C ′i0 .
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Then it follows from Step 3 with the elliptic estimate that the bound

||ai||L2
2(Ki0 ) ≤ Ci0

holds, since F+
Ai

=
√
−1d+ai and d∗ai = 0 holds by Step 3. In summary, we have the

estimates as below {
||ai||L2

2(Ki0 ) ≤ Ci0 , ||dai||L2(Ki) ≤ C,
||φi||2L2

1(Ki0 )
≤ Ci0 , ||φi||L4(Ki) ≤ C.

Step 6: By Steps 3 and 4 with local compactness of the Sobolev embedding, we can
choose a subsequence of spinors so that they converge to φ ∈ L4((X, g);S+) on each
compact subset. Moreover, the subsequence is locally in L2

1.

By Steps 3 and 5 with local compactness of the Sobolev embedding, we can choose a
subsequence of 1-forms so that they converge to a ∈ (L2

1)loc((X, g); Λ1) on each compact
subset. Moreover da is in L2((X, g); Λ2).

Since (d + a, φ) is a solution to the perturbed SW equation by v+ with respect to
(X, g), we conclude φ ≡ 0 by Lemma 4.3.

Hence, a subsequence {d+ai}i will converge to v+ in L2 on each compact subset.
However, this contradicts Corollary 2.11, completing the proof of Theorem 1.3.
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