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Finite group actions on symplectic Calabi-Yau
4-manifolds with b1 > 0

Weimin Chen

Abstract. This is the first of a series of papers devoted to the topology of sym-
plectic Calabi-Yau 4-manifolds endowed with certain symplectic finite group actions.

We completely determine the fixed-point set structure of a finite cyclic action on a

symplectic Calabi-Yau 4-manifold with b1 > 0. As an outcome of this fixed-point set
analysis, the 4-manifold is shown to be a T 2-bundle over T 2 in some circumstances,

e.g., in the case where the group action is an involution which fixes a 2-dimensional

surface in the 4-manifold. Our project on symplectic Calabi-Yau 4-manifolds is based
on an analysis of the existence and classification of disjoint embeddings of certain

configurations of symplectic surfaces in a rational 4-manifold. This paper lays the

ground work for such an analysis at the homological level. Some other result which
is of independent interest, concerning the maximal number of disjointly embedded

symplectic (−2)-spheres in a rational 4-manifold, is also obtained.

1. Introduction and the main results

In this paper, we study symplectic finite group actions on symplectic Calabi-Yau 4-
manifolds with b1 > 0. (Recall that a symplectic 4-manifold M is called Calabi-Yau if
KM is trivial.) Our starting point is the recent construction in [7] (see also [32]), where to
each symplectic 4-manifold M equipped with a finite symplectic G-action, we associate
a symplectic 4-manifold, denoted by MG, and an embedding D → MG of a disjoint
union of configurations of symplectic surfaces. Roughly speaking, the 4-manifold MG

is constructed by first de-singularizing the symplectic structure of the quotient orbifold
M/G along the 2-dimensional singular strata, making the underlying space |M/G| into a
symplectic 4-orbifold with only isolated singularities. Then MG is taken to be the minimal
symplectic resolution of the symplectic 4-orbifold |M/G|, and D is simply the pre-image
of the singular set of the original orbifold M/G in MG. See [7] for more details. The
idea is to recover the G-action on M , in particular the 4-manifold M , by analyzing the
embedding D → MG. With this understood, it was shown (cf. [7], Theorem 1.9) that if
M is Calabi-Yau, then MG is either of torsion canonical class, or is a rational 4-manifold,
or an irrational ruled 4-manifold over T 2. Moreover, MG is of torsion canonical class if
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and only if the quotient orbifold M/G has at most isolated Du Val singularities (cf. [7],
Lemma 4.1). Our basic observation is that, when MG is rational or ruled, it is possible
to effectively recover the original 4-manifold M by analyzing the embedding D → MG.
Moreover, as it turns out, one can also derive new constraints on the fixed-point set
structure of the G-action from non-existence results for the embedding D →MG.

As an initial step toward understanding the topology of symplectic Calabi-Yau 4-
manifolds endowed with a symplectic finite group action, we consider first the case where
the 4-manifold M has b1 > 0, and determine the fixed-point set structure of a finite cyclic
action on M . As a result of our analysis, we obtain the following

Theorem 1.1. Suppose M is a symplectic Calabi-Yau 4-manifold with b1 > 0 which is
endowed with a finite symplectic G-action. If the resolution MG is irrational ruled, or
MG is rational and G = Z2, then M must be diffeomorphic to a T 2-bundle over T 2 with
homologically essential fibers.

We remark that in Theorem 1.1, M is in fact diffeomorphic to a hyperelliptic surface
in the case of G = Z2 and MG is rational. On the other hand, we note that in the
case of G = Z2, MG is rational or ruled if and only if the fixed-point set MG contains a
2-dimensional component. We state this special case in the following

Corollary: Let M be a symplectic Calabi-Yau 4-manifold with b1 > 0, which is equipped
with a symplectic involution whose fixed-point set contains a 2-dimensional component.
Then M must be diffeomorphic to a T 2-bundle over T 2 with homologically essential fibers.

R. Inanc Baykur [2] informed us that he has examples of symplectic Calabi-Yau 4-
manifolds with b1 = 2 and 4, which are constructed using symplectic Lefschetz pen-
cils, and which come with a natural symplectic involution whose fixed-point set contains
a 2-dimensional component. Our theorem shows that these symplectic Calabi-Yau 4-
manifolds all have the standard smooth structure.

To put Theorem 1.1 in a perspective, recall that symplectic 4-manifolds can be clas-
sified into four classes according to their symplectic Kodaira dimension κs, which is a
smooth invariant and takes values in {−∞, 0, 1, 2}. (The classification is analogous to
the classification in complex surface theory, but the relevant definitions are given in com-
pletely different ways. For Kähler surfaces, the two classifications coincide. See [27].)
Furthermore, as a culmination of the seminal works of Gromov, McDuff, and Taubes
[23, 33, 42], the case of κs = −∞ is completely determined: these symplectic 4-manifolds
are precisely the rational or ruled surfaces.

Much effort has also been devoted to the next case, i.e., κs = 0. First, based on
Taubes’ theory [42], T.-J. Li (cf. [27]) showed that a minimal symplectic 4-manifold M
with κs = 0 is either Calabi-Yau (i.e., KM is trivial), or a double cover of M is Calabi-Yau.
Note that a symplectic Calabi-Yau 4-manifold is spin. Using the Bauer-Furuta theory of
spin 4-manifolds, together with Taubes’ theorem [42] and the classical Rochlin Theorem,
the following homological constraints were obtained, see [1, 27, 28, 34]:
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• A symplectic Calabi-Yau 4-manifold M either has the integral homology and
intersection form of a K3 surface, or has the rational homology and intersection
form of a T 2-bundle over T 2; in particular, 0 ≤ b1(M) ≤ 4, and if b1(M) > 0,
M has zero Euler number and signature. (If M is non-Calabi-Yau but a double
cover of M is Calabi-Yau, then M is an integral homology Enriques surface.)
• In addition, for the case of b1(M) = 4, the cohomology ring H∗(M ;R) is isomor-

phic to H∗(T 4;R) (cf. [39]).

The above homological constraints are in sharp contrast to the flexibility known in
higher dimensional symplectic Calabi-Yau manifolds, see e.g., [14]. Using a covering
trick, one can also obtain interesting constraints on the fundamental group (as well as
homotopy type in the case of b1 > 0) of a symplectic Calabi-Yau 4-manifold (cf. [16]),
e.g., in the case of b1 = 0, the fundamental group has no subgroup of finite index.

As for examples, besides K3 surfaces, all orientable T 2-bundles over T 2 are symplectic
Calabi-Yau 4-manifolds (cf. [21, 27]). (A topological classification of T 2-bundles over T 2

is given in [40].) We remark that not all T 2-bundles over T 2 admit a complex structure,
and not all T 2-bundles over T 2 have homologically essential fibers (cf. [21]). If a complex
surface is a symplectic Calabi-Yau 4-manifold, then it is either a K3 surface, a complex
torus, a primary Kodaira surface, or a hyperelliptic surface. With this understood, the
following has been an open question (cf. [12, 27]):

Does there exist a symplectic Calabi-Yau 4-manifold other than the known examples,
i.e., a T 2-bundle over T 2 or a K3 surface?

We remark that the basic smooth invariants in 4-manifold theory (e.g., the Seiberg-
Witten invariants) are ineffective in distinguishing homeomorphic symplectic Calabi-Yau
4-manifolds. As a result, one hopes to construct new examples which have different
topological invariants such as the fundamental group. On the other hand, concerning
characterizing the diffeomorphism types of symplectic Calabi-Yau 4-manifolds, Theorem
1.1 is the first result of such kind (under a finite symmetry condition). Finally, for
connections of this question with hypersymplectic structures and Donaldson’s conjecture,
we refer the readers to the recent article [15].

With the preceding understood, the idea of our project is to specialize in symplectic
Calabi-Yau 4-manifolds M which admits a G-action such that MG is rational or ruled,
and through D →MG, to gain insight about the topology of M . Note that with Theorem
1.1, the case where MG is irrational ruled is settled.

Now we state the results on the fixed-point set structure of a finite cyclic action on
symplectic Calabi-Yau 4-manifolds with b1 > 0. We shall separate the prime order and
non-prime order cases.

Theorem 1.2. Let G be a cyclic group of prime order, and let M be a symplectic Calabi-
Yau 4-manifold with b1 > 0, equipped with a non-free symplectic G-action. Then the
fixed-point set structure of the G-action and the symplectic resolution MG must belong to
one of the following cases:
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(1) Suppose MG has torsion canonical class. Then either G = Z2 or G = Z3. In
the former case, G either has 8 isolated fixed points, with b1(M) < 4 and MG

being an integral homology Enriques surface, or has 16 isolated fixed points, with
b1(M) = 4 and MG being an integral homology K3 surface. In the latter case
where G = Z3, the fixed point set consists of 9 isolated points of type (1, 2), with
b1(M) = 4 and MG being an integral homology K3 surface.

(2) Suppose MG is irrational ruled. Then G = Z2 or Z3, the fixed point set consists
of only tori with self-intersection zero, and MG is a S2-bundle over T 2.

(3) Suppose MG is rational. Then G = Z2, Z3 or Z5. The fixed-point set structure
and MG are listed below:

(i) If G = Z2, the fixed point set consists of one or two torus of self-intersection

zero and 8 isolated points, and MG = CP2#9CP2, b1(M) = 2.
(ii) If G = Z3, there are three possibilities, where b1(M) = 2 in (a), (b), and

b1(M) = 4 in (c):
(a) the fixed point set consists of 6 isolated points, where exactly 3 of the

fixed points are of type (1, 1), and MG = CP2#10CP2;
(b) the fixed point set consists of one torus with self-intersection zero and

6 isolated points, where exactly 3 of the fixed points are of type (1, 1),

and MG = CP2#10CP2;
(c) the fixed point set consists of 9 isolated points of type (1, 1), and

MG = CP2#12CP2.
(iii) If G = Z5, the fixed point set consists of 5 isolated points of type (1, 2), and

MG = CP2#11CP2, b1(M) = 4.

Theorem 1.3. Let G be a cyclic group of non-prime order, and let M be a symplectic
Calabi-Yau 4-manifold with b1 > 0, equipped with a symplectic G-action such that no
subgroups of G act freely on M . Suppose MG is rational or ruled, but for any prime order
subgroup H, MH has torsion canonical class. Then G = Z4 or Z8. Moreover,

(i) If G = Z4, there are two possibilities:
(a) the G-action has 4 isolated fixed points, where exactly 2 of the fixed points

are of type (1, 1), and 4 isolated points of isotropy of order 2, with

MG = CP2#11CP2; in this case, b1(M) = 2,
(b) the G-action has 4 isolated fixed points, all of type (1, 1), and 12 isolated

points of isotropy of order 2, with MG = CP2#13CP2; in this case,
b1(M) = 4.

(ii) If G = Z8, there are two possibilities, where in both cases, b1(M) = 4:
(a) the G-action has 2 isolated fixed points, all of type (1, 3), and 2 isolated points

of isotropy of order 4 of type (1, 3), and 12 isolated points of isotropy of order

2, with MG = CP2#11CP2;
(b) the G-action has 2 isolated fixed points, all of type (1, 5), and 2 isolated points

of isotropy of order 4 of type (1, 1), and 12 isolated points of isotropy of order

2, with MG = CP2#11CP2.
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Remarks: (1) Let n be the order of G (prime or non-prime). An isolated fixed point q
is said to be of type (1, b) (where 0 < b < n) if there is a generator g of G such that the
induced action of g on TqM has eigenvalues exp(2πi/n) and exp(2πib/n) (with respect
to a complex structure on TqM compatible with the symplectic structure on M). More
generally, an isolated point q is of isotropy of order m of type (1, b) (where 0 < b < m)
if there is a generator g of the isotropy subgroup Gq at q, such that m = |Gq| and the
induced action of g on TqM has eigenvalues exp(2πi/m) and exp(2πib/m). Note that if
G = Z2 or the isotropy order m = 2, q is always of type (1, 1).

(2) In light of Theorem 1.1, it remains to determine M when MG is rational and
G 6= Z2. Examining the cases in Theorems 1.2 and 1.3 where MG is rational, we see that
either b1(M) = 2 or b1(M) = 4. In particular, if M admits a complex structure, then M
must be either a hyperelliptic surface or a complex torus.

(3) We point out that for all the cases where MG is rational, the fixed-point set struc-
tures can be realized by holomorphic actions (either on a hyperelliptic surface or a com-
plex torus). Explicit examples realizing the fixed-point set structures listed in Theorem
1.2(3)(iii) and Theorem 1.3(ii) (where G = Z5 or Z8) can be found in Fujiki [18], Table 6
(examples for the remaining cases can be easily constructed by hand).

For a large part, the proofs of Theorems 1.2 and 1.3 employ the standard techniques
in group actions, i.e., the Lefschetz fixed point theorem and the G-signature theorem,
coupled with the standard results in symplectic topology of rational and ruled surfaces
and the topological constraints of minimal symplectic 4-manifolds with κs = 0 through the
use of MG. Some of the cases also require the use of G-index theorem for Dirac operators
and Seiberg-Witten theory. These traditional methods are quite efficient in determining
the fixed-point set structure for the isolated fixed points, however, for the 2-dimensional
fixed components, these methods have their natural limitations. The reason is that the
2-dimensional fixed components (particularly the tori of self-intersection zero) often do
not make any contribution in the various G-index theorem calculations, hence cannot
be detected by these methods. (See [10], Section 3, for a summary of these traditional
methods.)

With this understood, in order to obtain further constraints on the 2-dimensional fixed
components (as well as for a proof of Theorem 1.1), we shall analyze the embedding of D
in MG. It turns out that the main difficulty occurs when MG is rational.

To explain this aspect of the story, we let (X,ω) be a symplectic rational 4-manifold,

where X = CP2#NCP2. We fix a reduced basis H,E1, E2, · · · , EN of (X,ω) (a more
detailed discussion on reduced bases will be given in Section 3). Then for any symplec-
tic surface in X, its homology class A can be expressed in terms of the reduced basis
H,E1, E2, · · · , EN :

A = aH −
N∑
i=1

biEi, where a ∈ Z, bi ∈ Z.
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The numbers a, bi are called the a-coefficient and bi-coefficients of A. By the adjunc-
tion formula, the numbers a and bi are bound by a set of equations involving the self-
intersection number A2 and the genus of the surface. It follows easily from these equations
that for each fixed value of the a-coefficient, there are only finitely many possible values
for the bi-coefficients. However, for each given symplectic surface, there is no a priori
upper bound for the a-coefficient of its class A, although one can show that there is a
lower bound for the a-coefficient (cf. Lemmas 3.3 and 3.4).

Now suppose D is a disjoint union of configurations of symplectic surfaces embedded
in X, where its components are denoted by Fk. The first step in approaching the problem
of existence and classification of D → X is to look at the classes of the components Fk in
a given reduced basis. This process often involves a case-by-case examination, hence it is
important that for each component Fk, there are only finitely many possible homological
expressions. Such a finiteness can be achieved by bounding the values of the a-coefficient
of each Fk, as the self-intersection number F 2

k and the genus of Fk are all pre-determined
by D → X.

In the present situation, c1(KX) is supported in D. More precisely,

c1(KX) =
∑
k

ckFk, where ck ∈ Q and ck ≤ 0.

As c1(KX) = −3H+
∑N
i=1Ei, the a-coefficient of c1(KX) equals −3. It follows easily that

for those components Fk with ck 6= 0, the a-coefficient is bounded from above. However,
if Fk is a (−2)-sphere, which is either disjoint from the other components, or appears in a
configuration of only (−2)-spheres, then ck = 0 and there is no bearing on the a-coefficient
of Fk from c1(KX).

It turns out that we can remedy this issue by imposing an auxiliary area condition.
More concretely, let A be the class of a symplectic (−α)-sphere where α = 2 or 3. If
the area condition ω(A) < −c1(KX) · [ω] is satisfied, then A must take the following
expression in a given reduced basis:

A = aH − (a− 1)Ej1 − Ej2 − · · · − Ej2a+α .

In particular, the a-coefficient of A has an upper bound in terms of N :

a ≤ 1

2
(N − α)

(See Lemma 3.6.) On the other hand, for the problem of existence and topological classi-
fication of embeddings of D in X, one can always freely impose such an area condition by
working with a different symplectic structure (cf. Lemma 4.1). Thus in principle, at least
for the problem we have at hand, we have developed the necessary tools in this paper
to classify the possible embeddings D → MG at the homological level. In particular, by
choosing an appropriate symplectic structure ω on MG, there are only finitely many pos-
sible homological expressions for the components of D with respect to any given reduced
basis of (MG, ω). In forthcoming papers, we shall further develop techniques in order to
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understand the possible embeddings D →MG beyond the homological level. (See [8] for
more discussions.)

In the course of the proof of Theorem 1.1, we also discover the following result which
is of independent interest.

Theorem 1.4. Let X = CP2#NCP2 where N = 7, 8 or 9. There exist no N disjointly
embedded symplectic (−2)-spheres in X.

We remark that by a theorem of Ruberman [37], there exist N disjointly embedded

smooth (−2)-spheres in X = CP2#NCP2 for any N ≥ 2. On the other hand, for N = 7
and 8, there exist N homology classes F1, F2, · · · , FN ∈ H2(X), where Fi ·Fj = 0 for any
i 6= j, and each individual Fi can be represented by a symplectic (−2)-sphere (cf. Lemma
5.1). The above theorem says that these homology classes can not be represented simul-
taneously by disjoint symplectic (−2)-spheres. For N = 9, the corresponding homology
classes do not exist (cf. Lemma 5.1).

The proof of Theorem 1.4 relies on a recent theorem of Ruberman and Starkston,
which asserts that the combinatorial line arrangement coming from the Fano plane has no
topological C-realization (cf. [38]). Our result and method raises naturally the following
interesting

Question: For each N ≥ 2, what is the maximal number of disjointly embedded symplectic
(−2)-spheres in the rational 4-manifold CP2#NCP2?

We point out that for any N ≥ 3 and odd, there always exist N−1 disjointly embedded
symplectic (−2)-spheres in CP2#NCP2. So for N = 7 and 9, the maximal number is 6
and 8 respectively.

As for the proof of Theorem 1.1, the case where G = Z2 and MG is rational is the most
delicate one. Here the key technical result, stated as Lemma 5.1, is a classification of all
possible homological expressions (in a reduced basis) of the classes of any given set of 8

disjointly embedded symplectic (−2)-spheres in the rational elliptic surface CP2#9CP2,

where the symplectic structure on CP2#9CP2 is chosen to obey a certain set of delicate
area constraints on the (−2)-spheres (such a symplectic structure always exists by Lemma
4.1). The proof of Theorem 1.4 also relies on this technical result.

The organization of the paper is as follows. In Section 2, we give an examination
of the fixed-point set structure using the traditional methods in group actions, coupled
with some standard results and techniques in symplectic 4-manifolds and Seiberg-Witten
theory. Section 3 is occupied by a study of symplectic surfaces in rational 4-manifolds.
We begin by deriving some basic constraints on the a, bi-coefficients of a class A which is
represented by a connected, embedded symplectic surface. The later part of the section
focuses on the classes of symplectic spheres; in particular, it contains Lemma 3.6, which
gives an upper bound on the a-coefficient of a symplectic (−2)-sphere or (−3)-sphere under
an area condition. In Section 4, we begin by proving a lemma (i.e., Lemma 4.1) which
allows us to freely impose certain auxiliary area conditions. This lemma, especially when
combined with Lemma 3.6, proves to be very critical in our analysis of the embedding
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D → MG. We then prove several non-existence results concerning certain symplectic
configurations in rational 4-manifolds. These results are used to further remove some
ambiguities concerning 2-dimensional fixed components in Section 2. In Section 5, we
give proofs of the main theorems.

2. The fixed-point set: a preliminary examination

We give a preliminary analysis of the fixed-point set structure, using mainly the tra-
ditional methods. For the reader’s convenience, we shall begin with a brief review of the
various G-index theorems that will be frequently used in this section. To this end, let
M be a symplectic 4-manifold equipped with a symplectic G-action, where G is cyclic of
order n. For any nontrivial element g ∈ G, the fixed-point set Fix(g) of g consists of a
disjoint union of symplectic surfaces {Yi} and isolated points {qj}. In general, Fix(g)
depends on g, but when G is of prime order, Fix(g) coincides with the fixed-point set
MG of the G-action. The local action of g near Fix(g) is determined by a set of weights
{ci}, {(aj , bj)} (where 0 < ci, aj , bj < |g|) as follows. Along each fixed symplectic surface
Yi, the symplectic structure on M determines a complex structure on the normal bundle
of Yi. With this understood, the action of g on the normal bundle of Yi is given by
multiplication of exp(2πici/|g|). Likewise, at each isolated fixed point qj , the action of
g on the tangent space at qj has eigenvalues exp(2πiaj/|g|), exp(2πibj/|g|) with respect
to a complex structure compatible to the symplectic structure on M . We recall that
an isolated point q ∈ M is of isotropy of order m of type (1, b) if q ∈ Fix(g) for some
element g ∈ G of order |g| = m with weights (1, b). (Note that when m = n, the order
of G, q ∈MG is an isolated fixed point of G.) We remark that q ∈M corresponds to an
isolated Du Val singularity in M/G precisely when b = m− 1.

The fixed-point set Fix(g) and the associated weights {ci}, {(aj , bj)} play a prominent
role in the various G-index theorems, which we review next. See [10] and the references
therein for more details. We begin with the Lefschetz fixed point theorem and the G-
signature theorem. Recall that the Lefschetz number L(g,M) is defined, for any g ∈ G,
as

L(g,M) =

4∑
k=0

(−1)ktr(g|Hk(M ;R)),

where tr(g|Hk(M ;R)) stands for the trace of the induced action of g on Hk(M ;R). Likewise,
the number Sign(g,M) is defined as

Sign(g,M) = tr(g|H2,+(M ;R))− tr(g|H2,−(M ;R)),

where for the action of g onH2,+(M ;R) andH2,−(M ;R), we fix aG-invariant Riemannian
metric on M and look at the action of G on the space of self-dual and anti-self-dual
harmonic forms respectively. With this understood, the Lefschetz fixed point theorem
states that

L(g,M) = χ(Fix(g)) =
∑
i

χ(Yi) + #{qj},
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and the G-signature theorem states that

Sign(g,M) = −
∑
j

cot(
ajπ

|g|
) · cot(

bjπ

|g|
) +

∑
i

csc2(
ciπ

|g|
) · Y 2

i .

We remark that when G is of prime order n = p, one can sum over all the nontrivial
elements g ∈ G and obtain the following (weak) version of the Lefschetz fixed point
theorem

p · χ(M/G) = χ(M) + (p− 1) · χ(MG),

and the G-signature theorem

p · Sign(M/G) = Sign(M) +
∑
j

defqj +
∑
i

defYi ,

where defqj =
∑

16=λ∈C,λp=1
(1+λaj )(1+λbj )

(1−λaj )(1−λbj )
, defYi = p2−1

3 ·Y 2
i , which are called the signa-

ture defects.
Next we review the G-index theorem for Dirac operators, where we further assume that

M is a spin 4-manifold and G is of an odd prime order n = p. In this case, it was shown
in [10] that the G-action on M must be spin; in particular, the orbifold M/G is spin.
With this understood, we fix a G-invariant Riemannian metric on M and let D be the
corresponding Dirac operator. Then KerD and CokerD are complex G-representations.
For any nontrivial element g ∈ G, we write

KerD = ⊕p−1
k=0V

+
k , CokerD = ⊕p−1

k=0V
−
k ,

where V +
k , V −k are the eigenspaces of g with eigenvalue µkp := exp 2kπi

p . Then the Spin

number Spin(g,M) is defined as

Spin(g,M) =

p−1∑
k=0

dkµ
k
p, where dk ≡ dimC V

+
k − dimC V

−
k .

Since both KerD and CokerD are quaternion vector spaces, and the quaternions i and j are
anti-commutative, it follows that V ±0 are quaternion vector spaces, and that multiplication
by j maps V ±k isomorphically to V ±p−k for k > 0. This implies that d0 is even and dk = dp−k
for k > 0. Finally, we note that d0 equals the index of the Dirac operator on the spin
orbifold M/G.

The following formula for Spin(g,M) is given in Lemma 3.8 of [10], assuming that the
weights of the action of g near Fix(g) = {Yi} ∪ {qj} are {ci}, {(aj , bj)}:

Spin(g,M) = −
∑
j

(−1)k(g,qj)
1

4
csc(

ajπ

p
) csc(

bjπ

p
) +

∑
i

(−1)k(g,Yi)
Y 2
i

4
csc(

ciπ

p
) cot(

ciπ

p
),

where k(g, qj) is given by the equation k(g, qj) · p = 2rj + aj + bj for 0 ≤ rj < p, and
k(g, Yi) is given by the equation k(g, Yi) · p = 2ri + ci for 0 < ri < p. This concludes the
review of the G-index theorems to be used in this section.
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With the preceding understood, for the rest of this section, we assume that M is Calabi-
Yau with b1 > 0; in particular, M is spin. Furthermore, we assume that no subgroups of
G act freely on M . We shall denote by gi the genus of the symplectic surface Yi. Then the
adjunction formula, together with the fact that c1(KM ) = 0, implies that Y 2

i = 2gi − 2
for each i.

The following homological constraints on M will be frequently used: 2 ≤ b1(M) ≤ 4,
and χ(M) = Sign(M) = 0, which implies

b+2 (M) = b−2 (M) = b1(M)− 1.

Finally, recall from [7], Theorem 1.9 and Lemma 4.1, that MG is of torsion canonical
class if M/G has at most isolated Du Val singularities; otherwise, MG is either a rational
surface, which occurs precisely when b1(M/G) = b1(MG) = 0, or MG is a ruled surface
over T 2 and b1(M/G) = b1(MG) = 2. We note that the above homological constraints on
M apply to MG as well when MG is of torsion canonical class and b1(MG) = b1(M/G) > 0.
When MG is of torsion canonical class and b1(MG) = 0, we note that either χ(MG) = 12
(where MG is a homology Enriques surface) or χ(MG) = 24 (where MG is a homology
K3 surface).

Now we begin with our analysis on the fixed-point set structures. First, we observe
the following lemma.

Lemma 2.1. Suppose b1(M) = 2 or 3, and G is of prime order p such that MG has
torsion canonical class. Then p = 2 and MG consists of 8 isolated points. Furthermore,
b1(M/G) = 0 and b+2 (M/G) = 1.

Proof. Since MG has torsion canonical class, M/G has only isolated Du Val singularities
(cf. [7], Lemma 4.1). By the Lefschetz fixed point theorem,

p · χ(M/G) = χ(M) + (p− 1) ·#MG.

With χ(M) = 0, and observing that the resolution of each singular point of M/G is a
chain of p− 1 spheres, we obtain the following expression

χ(MG) = χ(M/G) + (p− 1) ·#MG = (p− 1)(
1

p
+ 1) ·#MG.

On the other hand, note that χ(MG) = 0, 12, or 24. It is clear that χ(MG) > 0, as
MG 6= ∅, so that χ(MG) = 12 or 24. We also note that b1(MG) = 0 in these two cases.
Moreover, since b1(M) = 2 or 3, we have b+2 (M/G) ≤ b+2 (M) = b1(M) − 1 ≤ 2, so
that χ(MG) = 12 must be true. The equation (p − 1)( 1

p + 1) · #MG = 12 has only

one solution: p = 2 and #MG = 8. Finally, note that b1(M/G) = b1(MG) = 0, and
b+2 (M/G) = b+2 (MG) = 1. This finishes off the proof. �

2.1. The case where b1 = 2

We first assume G is of prime order p. Let g ∈ G be a generator of G. Let {qj} be the
set of isolated fixed points and set z := #{qj}, and let {Yi} be the set of 2-dimensional
fixed components, with gi the genus of Yi.

10
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We begin with the case where MG is irrational ruled. Note that this happens exactly
when b1(M/G) = 2 = b1(M), which means that the action of G on H1(M ;R) is trivial.

Lemma 2.2. Suppose G is of prime order and MG is irrational ruled. Then the fixed-
point set MG consists of a disjoint union of tori of self-intersection zero.

Proof. We begin by observing b−2 (M) = b1(M) − 1 = 1, so that either b−2 (M/G) = 0
or b−2 (M/G) = 1. We claim b−2 (M/G) = 1. To see this, suppose to the contrary
that b−2 (M/G) = 0. Then G = Z2 must be true. With this understood, with
b+2 (M) = b1(M)− 1 = 1 and b+2 (M/G) = b+2 (MG) = 1, the Lefschetz fixed point theorem
gives ∑

i

(2− 2gi) + z = L(g,M) = 2− 2× 2 + 1− 1 = −2,

and the G-signature theorem gives∑
i

Y 2
i = Sign(g,M) = 1− (−1) = 2.

With Y 2
i = 2gi − 2 for each i, it follows easily that z = 0, i.e., there are no isolated fixed

points. As a consequence, we note that the underlying space of M/G is smooth, and it is
simply the resolution MG, which is an irrational ruled 4-manifold by the assumption. But
this implies that b−2 (M/G) = b−2 (MG) ≥ 1, contradicting the assumption b−2 (M/G) = 0.
Hence we must have b−2 (M/G) = 1. With b−2 (M/G) = 1, it follows easily that L(g,M) = 0
and Sign(g,M) = 0.

The equation L(g,M) = 0 implies z =
∑
i(2gi − 2) =

∑
i Y

2
i . Suppose to the

contrary that z > 0. Then there must be a component Yi such that Y 2
i > 0. Since

b+2 (M/G) = b+2 (MG) = 1 as MG is irrational ruled, it follows easily that there can be
only one such component. As a consequence, by replacing g with a suitable power, we
may assume that the weight of the action of g along the component Yi with Y 2

i > 0 equals
1 (i.e., ci = 1 if Y 2

i > 0). It follows from the G-signature theorem that

Sign(g,M) = −
∑
j

cot(
ajπ

p
) · cot(

bjπ

p
) +

∑
i

csc2(
ciπ

p
)Y 2
i

>
∑
i

(csc2(
ciπ

p
)− csc2(

π

p
)) · Y 2

i ,

where we use the fact that z =
∑
i Y

2
i and cot(

ajπ
p ) · cot(

bjπ
p ) < csc2(πp ) for each j. Since

ci = 1 when Y 2
i > 0, it follows easily that

∑
i(csc2( ciπp ) − csc2(πp )) · Y 2

i ≥ 0. This leads

to a contradiction that Sign(g,M) > 0, hence z = 0 must be true.
With z = 0, MG is simply the underlying manifold |M/G|, which must be a S2-bundle

over T 2 as b−2 (M/G) = 1. It remains to show that each Yi is a torus. This follows easily
by observing that

∑
i(2gi − 2) = z = 0, and that gi > 0 for each i. The latter is true

because if Yi is a sphere, then Y 2
i = −2, so that Yi descends to a (−2p)-sphere in MG.

But MG is a S2-bundle over T 2, it does not contain any (−2p)-sphere. This finishes off
the proof. �

11
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Next we consider the case where MG is rational; note that this happens exactly when
b1(M/G) = 0. With b1(M) = 2, the action of G on H1(M ;Z)/Tor is given by elements
of SL(2,Z). It follows easily that G is either Z2 or Z3.

Lemma 2.3. Suppose MG is rational and G = Z2. Then G has 8 isolated fixed points.
Furthermore, {Yi} 6= ∅ and

∑
i Y

2
i = 2(1− b−2 (M/G)).

Proof. For G = Z2, we first observe that the G-Signature theorem gives

1− tr(g|H2,−) = Sign(g,M) =
∑
i

Y 2
i =

∑
i

(2gi − 2).

On the other hand, the Lefschetz fixed point theorem implies that

z +
∑
i

(2− 2gi) = L(g,M) = 2− 4× (−1) + 1 + tr(g|H2,−) = 8−
∑
i

(2gi − 2).

It follows that z = 8. Finally,
∑
i Y

2
i = 1 − tr(g|H2,−) = 2(1 − b−2 (M/G)) because

b−2 (M) = 1. Note that {Yi} 6= ∅ because MG is rational. This finishes the proof. �

Lemma 2.4. Suppose MG is rational and G = Z3. Then G has 6 isolated fixed points,
exactly three of which are of type (1, 1). Furthermore,

∑
i Y

2
i = 0, and at most one of the

components in {Yi} is a sphere.

Proof. First of all, observe that b−2 (M/G) = 1 as G = Z3, and consequently,

L(g,M) = 2− 4× (−1

2
) + 1 + 1 = 6, Sign(g,M) = 1− 1 = 0.

If we let x, y be the number of isolated fixed points of G which are of type (1, 1) and type
(1, 2) respectively, then the Lefschetz fixed point theorem and the G-Signature theorem
imply, respectively, that

x+ y +
∑
i

(2− 2gi) = 6 and − 1

3
x+

1

3
y +

4

3
·
∑
i

Y 2
i = 0.

With Y 2
i = 2gi − 2, we eliminate the variable x and obtain 2y + 3

∑
i Y

2
i = 6. On the

other hand, observe that b−2 (M/G) = 1 implies that there is at most one component
Yi such that Y 2

i < 0 (note that these are precisely the spherical components in {Yi}).
Consequently, it is easily seen that

∑
i Y

2
i ≥ −2, and with this, it follows easily that y = 0

or 3 are the only possibilities, where x = 8 or 3 and
∑
i Y

2
i = 2 or 0 respectively.

It remains to eliminate the possibility that x = 8, y = 0 and
∑
i Y

2
i = 2. To this end,

we observe that the G-action is spin because the order of G is an odd prime (cf. [10]).
Moreover, the index of the Dirac operator on the spin orbifold M/G must be zero because
b+2 (M/G) = b−2 (M/G) = 1 (cf. Fukumoto-Furuta [19], Corollary 1). We shall prove the
index is nonzero, thus eliminating the case x = 8, y = 0 and

∑
i Y

2
i = 2.

First, let D be the Dirac operator on M . Then as G = Z3, it follows easily from
Index D = − 1

8Sign(M) = 0 that Spin(g,M) = 3
2d0, where d0 equals the index of the

Dirac operator on M/G.

12
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Next we compute Spin(g,M) using the G-index theorem for Dirac operators (cf. [10],
Lemma 3.8). In order to apply the formula for Spin(g,M), we note that for a type (1, 1)
isolated fixed point qj , the number k(g, qj) = 2, and for a type (1, 2) isolated fixed point
qj , k(g, qj) = 1. On the other hand, it is easy to check that k(g, Yi) = ci for any Yi. With
these understood, it follows easily that the Spin number

Spin(g,M) = −1

3
x+

1

3
y +

∑
i

(−1

6
Y 2
i ) = −1

3
× 8 +

1

3
× 0− 1

6
× 2 = −3.

Consequently, d0 = 2
3Spin(g,M) = −2, which is nonzero. This finishes the proof. �

Finally, we consider the case where G is of non-prime order n. We assume that MG is
rational or ruled, and that for any subgroup H of prime order, MH has torsion canonical
class.

First, by Lemma 2.1, the order n must be a power of 2; more precisely, n = 2k > 2.
Furthermore, b1(M/G) = 0, so that MG must be rational. Finally, note that the action
of G on H1(M ;Z)/Tor is given by elements of SL(2,Z). It follows easily that n = 4.

With the preceding understood, we fix a generator g of G, and let H be the subgroup
of order 2 generated by h := g2. Then by our assumption, MH has torsion canonical
class. By Lemma 2.1, MH consists of 8 isolated fixed points. Since MG is contained in
MH , the action of G has no 2-dimensional fixed components.

To proceed further, note that there are two possibilities: b−2 (M/G) = 0 or 1. Consider
first the case where b−2 (M/G) = 0. In this case, L(g,M) = 2 − 4 × 0 + 1 − 1 = 2, so
the G-action has 2 isolated fixed points. Examining the induced action of G on MH , the
remaining 6 fixed points of H are of isotropy of order 2, and consequently, the orbifold
M/G has 5 singular points – two of order 4 and three of order 2. Let x, y be the number
of fixed points of G of type (1, 1) and type (1, 3) respectively. Note that the resolution of
a type (1, 1) fixed point in MG is a (−4)-sphere and the resolution of a type (1, 3) fixed
point is a linear chain of three (−2)-spheres. A point of isotropy of order 2 gives rise to
a (−2)-sphere in MG. As a result, we have

b−2 (MG) = b−2 (M/G) + x+ 3y + 3 = x+ 3y + 3.

On the other hand, c1(KMG
) =

∑
i−

1
2Ei, where Ei are the (−4)-spheres in MG coming

from the resolution of type (1, 1) fixed points of G (cf. [7], Proposition 3.2). Thus
c1(KMG

)2 =
∑
i

1
4E

2
i = −x. Since MG is rational, we have c1(KMG

)2 = 9 − b−2 (MG),
which is −x = 9 − (x + 3y + 3). It follows that y = 2, and x = 2 − y = 0. But this is
a contradiction as it implies that c1(KMG

) = 0. Hence the case where b−2 (M/G) = 0 is
eliminated.

For the case where b−2 (M/G) = 1, it is easy to see that L(g,M) = 4, so the G-action
has 4 isolated fixed points. A similar calculation results

b−2 (MG) = x+ 3y + 3 and c1(KMG
)2 = −x.

It follows easily that x = y = 2. We summarize our discussions in the following

13
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Lemma 2.5. Suppose MG is rational or ruled, but for any subgroup H of prime order,
MH has torsion canonical class. Then MG must be rational, and G is of order 4. Fur-
thermore, the fixed-point set MG consists of 4 isolated points, exactly two of which are of
type (1, 1), and there are 4 isolated points of isotropy of order 2 in M .

2.2. The case where b1 = 3

Assume MG is rational or ruled. We first observe that G must be Z2, which, with
b+2 (M) = b1(M)− 1 = 2 and b+2 (M/G) = 1, follows easily by Lemma 2.1.

Lemma 2.6. Suppose MG is rational or ruled. Then G must be of order 2. Moreover,

(i) if MG is irrational ruled, then the fixed-point set MG consists of a disjoint union
of tori of self-intersection zero;

(ii) if MG is rational, then the fixed-point set MG contains 8 isolated points, and the
2-dimensional fixed components {Yi} 6= ∅ and

∑
i Y

2
i = 2(1− b−2 (M/G)).

Proof. Since MG is rational or ruled and G = Z2, {Yi} 6= ∅. We denote by z the number
of isolated fixed points and let 1 6= g ∈ G. Then by the G-Signature theorem,∑

i

Y 2
i = Sign(g,M) = (1− 1)− tr(g|H2,−) = −tr(g|H2,−).

First, consider case (i) where MG is irrational ruled. In this case, b1(M/G) = 2, so the
Lefschetz fixed point theorem implies that

z +
∑
i

(2− 2gi) = L(g,M) = 2− 2× (1 + 1− 1) + (1− 1) + tr(g|H2,−) = tr(g|H2,−).

With Y 2
i = 2gi−2 for each i, it follows immediately that z = 0. As a consequence, MG is

simply the underlying manifold of M/G. This immediately ruled out the possibility that
b−2 (M/G) = 0, because as an irrational ruled 4-manifold, MG has non-zero b−2 .

Next, assume b−2 (M/G) = 1. In this case, by the same argument as in Lemma 2.2,
each Yi is a torus of self-intersection zero and MG is a S2-bundle over T 2.

Finally, we rule out the possibility that b−2 (M/G) = 2. In this case,
∑
i Y

2
i =

−tr(g|H2,−) = −(1 + 1) = −2, so that there must be a Yi which is a (−2)-sphere. On the
other hand, b−2 (M/G) = 2 implies that MG is a S2-bundle over T 2 blown up at one point.
The descendent of Yi is a symplectic (−4)-sphere in MG, to be denoted by C. To derive
a contradiction, let F and E be the fiber class and the exceptional (−1)-class of MG

respectively. Note that c1(KMG
) ·F = −2 and c1(KMG

) ·E = −1. With this understood,
since π2(MG) is generated by F and E, we write C = aF + bE. Then −4 = C2 = −b2
and 2 = c1(KMG

) · C = −2a − b, giving either C = −2F + 2E or C = −2E. Note that
in both cases, C has a negative symplectic area. Hence the possibility b−2 (M/G) = 2 is
ruled out.

For case (ii) where MG is rational, b1(M/G) = 0. In this case, the Lefschetz number
L(g,M) = 2−2× (−1−1−1)+(1−1)+ tr(g|H2,−) = 8+ tr(g|H2,−), which implies z = 8.
The assertion

∑
i Y

2
i = 2(1 − b−2 (M/G)) follows easily from the fact that tr(g|H2,−) =

2(b−2 (M/G)− 1). This finishes the proof. �
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2.3. The case where b1 = 4

The fact that the cohomology ring H∗(M ;R) is isomorphic to that of T 4 (cf. [39]) plays
a crucial role in the analysis of the fixed-point set structure in this case. In particular, this
fact has the following two corollaries: (1) it allows us to express the action of G on the
entire cohomologyH∗(M ;R) in terms of its action onH1(M ;R), and (2) since the Hurwitz
map π2(M) → H2(M) has trivial image, the fixed-point set MG does not have any
spherical components. With the help of the adjunction formula, this is equivalent to the
statement that all the 2-dimensional fixed components have nonnegative self-intersection.

For the first point above, to be more concrete, let g ∈ G be any nontrivial element.
Since the action of g on M is orientation-preserving, the representation of g on H1(M ;R)
splits into a sum of two complex 1-dimensional representations. This said, there is a
basis {αi}, i = 1, 2, 3, 4, of H1(M ;R) such that α1 ∪ α2 ∪ α3 ∪ α4 ∈ H4(M ;R) is positive
according to the natural orientation of M . Furthermore, we assume that the span of
α1, α2 and the span of α3, α4 are invariant under the action of g, and with respect to the
orientation given by the above order, the action of g is given by a rotation of angle θ1, θ2

respectively.

Lemma 2.7. With g, θ1, θ2 as given above, the following hold true:

(1) 2(cos θ1 + cos θ2), 4 cos θ1 cos θ2 ∈ Z.
(2) The Lefschetz number L(g,M) = 4(1− cos θ1)(1− cos θ2).
(3) The representation of g on H2,+(M ;R) (resp. H2,−(M ;R)) splits into a trivial 1-

dimensional representation and a 2-dimensional one on which g acts as a rotation
of angle θ1 + θ2 (resp. θ1 − θ2). Consequently,

Sign(g,M) = 2(cos(θ1 + θ2)− cos(θ1 − θ2)) = −4 sin θ1 sin θ2.

Proof. Let γ1 := α1 ∪ α3, γ2 := α1 ∪ α4, γ3 := α2 ∪ α3, and γ4 := α2 ∪ α4. Then a
straightforward calculation gives

g · (α1 ∪ α2) = α1 ∪ α2, g · (α3 ∪ α4) = α3 ∪ α4,

g · γ1 = cos θ1 cos θ2γ1 + cos θ1 sin θ2γ2 + sin θ1 cos θ2γ3 + sin θ1 sin θ2γ4,

g · γ2 = − cos θ1 sin θ2γ1 + cos θ1 cos θ2γ2 − sin θ1 sin θ2γ3 + sin θ1 cos θ2γ4,

g · γ3 = − sin θ1 cos θ2γ1 − sin θ1 sin θ2γ2 + cos θ1 cos θ2γ3 + cos θ1 sin θ2γ4,

and

g · γ4 = sin θ1 sin θ2γ1 − sin θ1 cos θ2γ2 − cos θ1 sin θ2γ3 + cos θ1 cos θ2γ4.

The action on H3(M ;R) can be similarly determined. From these calculations we deduce
easily that

L(g,M) = 2− 4(cos θ1 + cos θ2) + (2 + 4 cos θ1 cos θ2) = 4(1− cos θ1)(1− cos θ2).

In order to understand the action of g on H2,+(M ;R) and H2,−(M ;R), and to compute
Sign(g,M), we note that H2,+(M ;R) is spanned by βi, i = 1, 2, 3, where

β1 = α1 ∪ α2 + α3 ∪ α4, β2 = α1 ∪ α3 − α2 ∪ α4, β3 = α1 ∪ α4 + α2 ∪ α3.
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Likewise, H2,−(M ;R) is spanned by β′i, i = 1, 2, 3, where

β′1 = α1 ∪ α2 − α3 ∪ α4, β′2 = α1 ∪ α3 + α2 ∪ α4, β′3 = α1 ∪ α4 − α2 ∪ α3.

With this understood, the action of g on H2,+(M ;R) and H2,−(M ;R) is as follows: both
β1 and β′1 are fixed by g, and g acts on the span of β2, β3 and the span of β′2, β

′
3 as a

rotation of angle θ1 + θ2, θ1 − θ2 respectively. It follows in particular that Sign(g,M) :=
tr(g|H2,+)− tr(g|H2,−) is given by

Sign(g,M) = 2(cos(θ1 + θ2)− cos(θ1 − θ2)) = −4 sin θ1 sin θ2.

Finally, note that tr(g|H1(M ;R)) = 2(cos θ1 + cos θ2), hence 2(cos θ1 + cos θ2) ∈ Z. With
this, L(g,M) = 4(1− cos θ1)(1− cos θ2) ∈ Z implies that 4 cos θ1 cos θ2 ∈ Z as well. This
completes the proof of the lemma. �

With Lemma 2.7 at hand, we shall first examine the fixed-point set structure when G
is of prime order.

Lemma 2.8. Suppose G is of prime order p > 1. Then the following hold true.

(1) Either b+2 (M/G) = 1 or b+2 (M/G) = 3. Moreover, MG has torsion canonical
class if and only if b+2 (M/G) = 3 and b1(M/G) = 0.

(2) If MG has torsion canonical class, then p = 2 or p = 3, where in the former case,
the fixed-point set MG consists of 16 isolated points, and in the latter case, MG

consists of 9 isolated points of type (1, 2).
(3) If MG is irrational ruled, then MG consists of a disjoint union of tori of self-

intersection zero.
(4) If MG is rational, then p 6= 2 and p ≤ 5.

Proof. For (1), note that by Lemma 2.7, b+2 (M/G) = 3 if and only if θ1 + θ2 = 2π for
a generator g of G. If θ1 + θ2 6= 2π, then b+2 (M/G) = 1. Hence either b+2 (M/G) = 1
or b+2 (M/G) = 3 as claimed. It remains to show that if MG has torsion canonical class,
then b+2 (M/G) 6= 1 but b1(M/G) = 0. To see this, suppose MG has torsion canonical
class. Then the same argument as in Lemma 2.1 shows that χ(MG) = 12 or 24, and
b1(M/G) = 0. If b+2 (M/G) = 1, then χ(MG) = 12, and as in Lemma 2.1, p = 2 must be
true. With p = 2 and b1(M/G) = 0, the angles θ1, θ2 in Lemma 2.7 must be both equal
to π. But this implies that b+2 (M/G) = 3, contradicting the assumption of b+2 (M/G) = 1.
Hence part (1) is proved.

Part (2) follows readily from the same argument as in Lemma 2.1. Note that when
χ(MG) = 24, p = 2, 3 or 5. The case of p = 5 can be further eliminated by the (weak
version) G-signature theorem.

For part (3), if MG is irrational ruled, then b1(M/G) = 2. This means that in Lemma
2.7, one of the angles θ1, θ2 must be 0. As a corollary, L(g,M) = Sign(g,M) = 0 for any
nontrivial element g ∈ G, and b−2 (M/G) = 1. With this understood, part (3) follows by
the same argument as in Lemma 2.2.

Finally, for part (4) we assume MG is rational. Then b+2 (M/G) = 1 and b1(M/G) = 0,
so that by Lemma 2.7, p 6= 2. On the other hand, assume p ≥ 5. We fix a generator
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g ∈ G such that in Lemma 2.7, the angles θ1 = 2π
p and θ2 = 2qπ

p for some 0 < q < p− 1

(note that q 6= p− 1 as b+2 (M/G) = 1). Then it follows easily from p ≥ 5 that L(g,M) =
4(1−cos θ1)(1−cos θ2) satisfies the bound L(g,M) ≤ 7. With this understood, we appeal
to the following version of Lefschetz fixed point theorem

p · χ(M/G) = χ(M) + (p− 1) · L(g,M),

where χ(M) = 0 and L(g,M) ∈ Z. It follows easily that L(g,M) is divisible by p, and
with p ≥ 5 and L(g,M) ≤ 7, we have L(g,M) = p. A further examination easily removes
the possibility that p = 7. Hence p ≤ 5. This finishes the proof of the lemma. �

In the next two lemmas, we shall determine the fixed-point set structure where MG is
rational and G = Z3 or Z5. Let g ∈ G be a generator.

Lemma 2.9. Assume MG is rational and G = Z3. Then the fixed-point set MG consists
of 9 isolated points of type (1, 1), plus possible 2-dimensional components {Yi} which are
tori of self-intersection zero.

Proof. We observe that since MG is rational, b1(M/G) = 0, which implies that the angles
θ1, θ2 in Lemma 2.7 are both nonzero. Furthermore, b+2 (M/G) = 1 and G = Z3, which
implies θ1 = θ2. It follows easily that L(g,M) = 9 and Sign(g,M) = −3.

With this understood, let x, y be the number of isolated fixed points of type (1, 1)
and type (1, 2) respectively. Then the Lefschetz fixed point theorem and the G-signature
theorem imply that

x+ y −
∑
i

Y 2
i = 9 and − 1

3
x+

1

3
y +

4

3

∑
i

Y 2
i = −3.

Combining the two equations, we get x+ 5
3y = 9. It is easy to see that the solutions are

x = 9, y = 0 or x = 4, y = 3. In the former case,
∑
i Y

2
i = 0, while in the latter case,∑

i Y
2
i = −2. The latter case is not possible since Y 2

i ≥ 0 for all i. For the same reason,
we must have Y 2

i = 0 for all i in the former case. By the adjunction formula, each Yi is
a torus. This finishes the proof. �

Lemma 2.10. Assume MG is rational and G = Z5. Then the fixed-point set MG consists
of 5 isolated points of type (1, 2), plus possible 2-dimensional components {Yi} which are
tori of self-intersection zero.

Proof. We shall first apply the Lefschetz fixed point theorem and the weak version of
the G-signature theorem. To this end, recall from the proof of Lemma 2.8(4), that
L(g,M) = 5 and χ(M/G) = 4. The latter easily implies that Sign(M/G) = 0. On the
other hand, note that the signature defect for an isolated fixed point of type (1, 1), (1, 2)
(the same as (1, 3)) and (1, 4) is −4, 0, 4 respectively (cf. [9]). Thus if we let x, y, z be
the number of fixed points of type (1, 1), (1, 4) and (1, 2) respectively, then

x+ y + z −
∑
i

Y 2
i = 5 and− 4x+ 4y +

∑
i

52 − 1

3
Y 2
i = 0.
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Combining the two equations, we have x + 3y + 2z = 10. Note that x + y + z must be
odd, because

∑
i Y

2
i =

∑
i(2gi − 2) is even. It follows that z must be odd. The solutions

of x, y, z and
∑
i Y

2
i are listed below:

(1) x = 8, y = 0, z = 1, and
∑
i Y

2
i = 4,

(2) x = 5, y = 1, z = 1, and
∑
i Y

2
i = 2,

(3) x = 2, y = 2, z = 1, and
∑
i Y

2
i = 0,

(4) x = 4, y = 0, z = 3, and
∑
i Y

2
i = 2,

(5) x = 1, y = 1, z = 3, and
∑
i Y

2
i = 0,

(6) x = 0, y = 0, z = 5. and
∑
i Y

2
i = 0.

Next we shall first eliminate cases (1),(2), and (4) where
∑
i Y

2
i 6= 0 by computing

with the G-index theorem for Dirac operators, using the formula for the Spin number
Spin(g,M) in Lemma 3.8 of [10]. To this end, we divide the isolated fixed points {qj}
of each type and the fixed components {Yi} into two groups, I and II, according to the
following rule: for type (1, 1), group I consists of fixed points qj with (aj , bj) = (1, 1) or
(4, 4) (and the rest are group II), for type (1, 4), a fixed point qj belongs to group I if
(aj , bj) = (1, 4), and to group II if (aj , bj) = (2, 3), and for type (1, 2), group I consists
of fixed points qj with (aj , bj) = (1, 2) or (3, 4), and group II consists of fixed points qj
with (aj , bj) = (2, 4) or (1, 3), and finally, for a fixed component Yi, it belongs to group
I if and only if ci = 1 or 4. With this understood, the contribution to the Spin number
Spin(g,M) from an isolated fixed point qj takes values as follows:

• − 1
4 csc2 π

5 if qj is in group I and of type (1, 1),

• − 1
4 csc2 2π

5 if qj is in group II and of type (1, 1),

• 1
4 csc2 π

5 if qj is in group I and of type (1, 4),

• 1
4 csc2 2π

5 if qj is in group II and of type (1, 4),

• 1
4 csc π

5 csc 2π
5 if qj is in group I and of type (1, 2),

• − 1
4 csc π

5 csc 2π
5 if qj is in group II and of type (1, 2),

and the contribution from a fixed component Yi takes values as follows:

• − 1
4Y

2
i csc π

5 cot π5 if Yi is in group I,

• 1
4Y

2
i csc 2π

5 cot 2π
5 if Yi is in group II.

If we denote by xk, yk, zk, for k = 1, 2, the number of fixed points qj belonging to group
I, II, of type (1, 1), (1, 4), and (1, 2) respectively, and we denote by w1, w2 the sum of Y 2

i

for Yi belonging to group I, II respectively, then the Spin number

Spin(g,M) =
1

4
(

2∑
k=1

(yk − xk) csc2 kπ

5
+ (−1)kwk csc

kπ

5
cot

kπ

5
+ (z1 − z2) csc

π

5
csc

2π

5
).

Now the key observation is that for g2, the contributions to the Spin number for group
I and group II switch values. It follows easily then, with the identities

∑2
k=1 csc2 kπ

5 = 4
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and
∑2
k=1(−1)k csc kπ

5 cot kπ5 = −2, that

Spin(g,M) + Spin(g2,M) =

2∑
k=1

(yk − xk −
1

2
wk) = y − x− 1

2

∑
i

Y 2
i = −5

2

∑
i

Y 2
i .

(Note that 2
∑
i Y

2
i = x−y from the weak version of G-signature theorem.) On the other

hand, recall that in the definition of Spin number

Spin(g,M) = d0 + d1µ+ d2µ
2 + d3µ

3 + d4µ
4, where µ = exp(2πi/5),

one has d1 = d4, d2 = d3. As Spin(g2,M) = d0 + d1µ
2 + d2µ

4 + d3µ + d4µ
3, it follows

easily that

−5

2

∑
i

Y 2
i = Spin(g,M) + Spin(g2,M) = 2d0 − d1 − d2.

Finally, d0 + d1 + d2 + d3 + d4 = Ind D = −Sign(M)/8 = 0. It follows immediately that
d0 = −

∑
i Y

2
i . The integer d0 is the index of Dirac operator on the spin orbifold M/G,

which equals 0 because b−2 (M/G) = b+2 (M/G) = 1 (see Fukumoto-Furuta [19], Corollary
1). This rules out the cases (1),(2),(4), where d0 = −

∑
i Y

2
i 6= 0.

The above calculation also shows that in the remaining cases, d0 = d1 + d2 = 0.
Moreover, note that each Yi is a torus with Y 2

i = 0. In particular, w1 = w2 = 0.
To deal with the remaining possibilities, we use the Mod p vanishing theorem of Seiberg-

Witten invariants (cf. [35]). We shall first compute with the G-signature theorem (not
the weak version). First, recall that χ(M/G) = 4, so that b−2 (M/G) = 1 is true. It follows
that in Lemma 2.7, the angles θ1 6= ±θ2. Without loss of generality, we assume θ1 = 2π

5

and θ2 = 4π
5 in Lemma 2.7. With this we have

Sign(g,M) = 2(cos
6π

5
− cos

−2π

5
) = −2(cos

π

5
+ cos

2π

5
).

On the other hand, we observe that the same division of fixed points or components into
group I or group II works here too. With this understood, noting that w1 = w2 = 0, it
follows easily from the G-signature theorem that

Sign(g,M) =

2∑
k=1

(yk − xk) cot2 kπ

5
+ (z2 − z1) cot

π

5
cot

2π

5
.

Next we observe that Sign(g2,M) = 2(cos 12π
5 − cos −4π

5 ) = −Sign(g,M), and moreover,

for g2 the contributions to the Sign number for group I and group II switch values. Taking
the difference Sign(g,M)−Sign(g2,M), and using the identities (see Lemma 6.4 in [10])

cot2 π

5
− cot2 2π

5
= csc2 π

5
− csc2 2π

5
= 4 cot

π

5
cot

2π

5
,

we obtain

Sign(g,M) = (2(y1 − y2 + x2 − x1) + (z2 − z1)) · cot
π

5
cot

2π

5
.
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Now finally, observing the identity 5 cot π5 cot 2π
5 = 2(cos π5 + cos 2π

5 ) = −Sign(g,M), we
obtain the following constraint

2(y1 − y2 + x2 − x1) + z2 − z1 = −5.

With these preparations, we examine the remaining cases (3), (5) in more detail. First
consider case (3), where x = y = 2, z = 1. Observe that y1 − y2 + x2 − x1 is always even.
It follows easily that z2 − z1 = −1 and y1 − x1 = −(y2 − x2) = −1 in this case. For case
(5) where x = y = 1, z = 3, note that y1−y2 +x2−x1 = ±2. It follows that z2−z1 = −1
and y1 − x1 = −(y2 − x2) = −1 as well.

Next we check this against the formula for the Spin number Spin(g,M). To this end,
we will use the following identities:

csc
π

5
csc

2π

5
= 4 cot

π

5
cot

2π

5
, csc

π

5
cot

π

5
+ csc

2π

5
cot

2π

5
= 6 cot

π

5
cot

2π

5
,

which can be easily verified by direct calculation. Now with this understood, note that
on the one hand, the definition of the Spin number gives

Spin(g,M) =

4∑
k=0

dkµ
k = 2d1(cos

π

5
+ cos

2π

5
) = 5d1 cot

π

5
cot

2π

5
,

and on the other hand, we have from the formula in Lemma 3.8 of [10] that

Spin(g,M) =
1

4
(− csc2 π

5
+ csc2 2π

5
+ csc

π

5
csc

2π

5
) = 0.

It follows immediately that in cases (3), (5), we have d1 = 0, and as a result, dk = 0 for
all k = 0, 1, · · · , 4.

With the preceding understood, recall that the condition in the Mod p vanishing the-
orem of Seiberg-Witten invariants (cf. [35]) is 2dk < 1− bG1 + bG+ for any k = 0, 1, · · · , 4,

where bG1 = b1(M/G) = 0 and bG+ = b+2 (M/G) = 1 (note that since b1(M/G) = 0, the

fixed-point set JG in the Mod p vanishing theorem consists of a single point, i.e., [0], so
the integers {klj} in the theorem are given by {dk} for any l, and the integer d(c) = 0).
With dk = 0 for all k, the above condition in the Mod p vanishing theorem is satisfied,
so the Seiberg-Witten invariant for the canonical Spinc structure (which is induced by a
spin structure on M) vanishes (mod 5). But by Taubes’ theorem [42], the Seiberg-Witten
invariant equals 1, which is a contradiction. Hence cases (3), (5) are ruled out. This
finishes the proof. �

It remains to consider the case where G is of non-prime order, MG is rational or ruled,
but for any prime order subgroup H, MH has torsion canonical class. Let n be the order
of G. Then by Lemma 2.8, n = 2k3l. We first note that n 6= 6. This is because if n = 6,
then G = Z2 × Z3, and with the assumption that for any prime order subgroup H, MH

has torsion canonical class, it follows easily that MG has torsion canonical class as well,
which is a contradiction. Consequently, either k > 1 or l > 1 in n = 2k3l. Finally, note
that for any nontrivial element g ∈ G, the angles θ1, θ2 in Lemma 2.7 are both nonzero.
In particular, b1(M/G) = 0, and MG must be rational.
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First of all, we have

Lemma 2.11. Suppose G = Z4 and for the order 2 subgroup H, MH has torsion canonical
class. Then there are two possibilities:

(i) b+2 (M/G) = 3, and the G-action has 4 isolated fixed points, all of type (1, 3), and
12 isolated points of isotropy of order 2.

(ii) MG is rational, and the G-action has 4 isolated fixed points, all of type (1, 1), and
12 isolated points of isotropy of order 2.

Proof. Fix a generator g ∈ G. It is easy to see that in Lemma 2.7, either θ1 = −θ2 or
θ1 = θ2. So either b+2 (M/G) = 3, b−2 (M/G) = 1, or b+2 (M/G) = 1, b−2 (M/G) = 3. In any
case, we have χ(M/G) = 6. Finally, observe that L(g,M) = 4 in both cases.

On the other hand, by examining the action of G on MH , which consists of 16 isolated
points, and with L(g,M) = 4, it follows easily that M/G has 10 isolated singularities.
With χ(M/G) = 6, it follows that χ(MG) > 12, so that if MG has torsion canonical class,
then b+2 (M/G) = 3 must be true. Case (i) follows immediately.

Suppose MG is rational, and let x, y be the number of fixed points of type (1, 1)
and (1, 3) respectively. Then note that each type (1, 1) fixed point contributes a (−4)-
sphere in MG, which in turn contributes −1 to c1(KMG

)2. The other singular points of
M/G contribute zero, hence c1(KMG

)2 = −x. On the other hand, note that χ(MG) =
χ(M/G) + x+ 3y+ 6 = 12 + x+ 3y. As MG is rational, c1(KMG

)2 = 12− χ(MG), which
implies y = 0. Hence x = 4, and case (ii) follows. This finishes the proof. �

Now finally, we have

Lemma 2.12. Suppose MG is rational, but for any prime order subgroup H, MH has
torsion canonical class. Then the order n of G must either 4 or 8. Moreover, if n = 8,
then the G-action falls into one of the following two cases:

(i) the G-action has 2 isolated fixed points, all of type (1, 3), 2 isolated points of
isotropy of order 4 of type (1, 3), and 12 isolated points of isotropy of order 2;

(ii) the G-action has 2 isolated fixed points, all of type (1, 5), 2 isolated points of
isotropy of order 4 of type (1, 1), and 12 isolated points of isotropy of order 2.

Proof. It is easy to check that if G contains an element g of order 9, 12, or 16, then for the
angles θ1, θ2 of g in Lemma 2.7, the integrability conditions in Lemma 2.7(1) are violated.
It follows easily that k ≤ 3 and l = 0 in n = 2k3l, i.e., n = 4 or 8.

With the preceding understood, suppose n = 8. We fix a generator g such that θ1 = 2π
8 ,

θ2 = 2πq
8 in Lemma 2.7, where q is odd and 0 < q < 8. We note that q 6= 1 or 7, for

otherwise, the integrability conditions in Lemma 2.7(1) are violated. On the other hand,
let H be the subgroup of order 4 generated by g2. Then by Lemma 2.11, there are two
cases, (i) and (ii), as listed therein.

Suppose we are in case (i) of Lemma 2.11 where MH has torsion canonical class. In this
case, b+2 (M/H) = 3, which easily implies that q = 3 in θ2. As a corollary, L(g,M) = 2,
and b+2 (M/G) = b−2 (M/G) = 1, so that χ(M/G) = 4. Examining the action of g on MH ,
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with L(g,M) = 2, it follows easily that M/G has 6 isolated singular points, where two of
them have isotropy of order 8, one of isotropy of order 4, and three of isotropy of order
2. Now we determine the action of g at the two fixed points. We note that the minimal
resolution of a singular point of order 8 of type (1, 3) in MG is a pair of (−3)-spheres
intersecting transversely and positively at one point. Its contribution to c1(KMG

)2 is
easily seen to be −1. All other types of singular points of M/G are Du Val singularities,
so make zero contribution. On the other hand, the minimal resolution of a singular point
of order 8 of type (1, 7) in MG is a linear chain of seven (−2)-spheres, so its contribution
to χ(MG) is 7. With c1(KMG

)2 = 12− χ(MG), it follows easily that there cannot be any
fixed point of g of type (1, 7). This finishes the discussion on case (i).

The analysis for case (ii) of Lemma 2.11, where MH is rational, is completely analogous,
hence omitted. This finishes the proof. �

3. Symplectic surfaces in a rational 4-manifold

Let (X,ω) be a symplectic rational 4-manifold where X = CP2#NCP2. We shall
denote the canonical line bundle of (X,ω) by Kω to indicate the dependence on ω. We
also use KX when the dependence on ω needs not to be emphasized.

We begin with the definition of reduced bases of (X,ω). To this end, let EX be the
set of classes in H2(X) which can be represented by a smooth (−1)-sphere, and let
Eω := {E ∈ EX |c1(Kω) · E = −1}. Then each class in Eω can be represented by a
symplectic (−1)-sphere (cf. [29]); in particular, ω(E) > 0 for any E ∈ Eω.

Definition 3.1. A basis H,E1, · · · , EN of H2(X) is called a reduced basis of (X,ω) if
the following are true:

• it has a standard intersection form, i.e., H2 = 1, E2
i = −1 and H ·Ei = 0 for any

i, and Ei · Ej = 0 for any i 6= j;
• Ei ∈ Eω for each i, and moreover, if N ≥ 3, the following area conditions are sat-

isfied: ω(EN ) = minE∈Eω ω(E), and for any 2 < i < N , ω(Ei) = minE∈Ei ω(E),
where Ei := {E ∈ Eω|E · Ej = 0 ∀j > i} for any i < N ;
• c1(Kω) = −3H + E1 · · ·+ EN .

Without loss of generality, we assume ω(E1) ≥ ω(E2). Then the following constraints
on the symplectic areas are straightforward from Definition 3.1.

• ω(H) > 0, and ω(Ei) ≥ ω(Ej) for any i < j;
• for any i 6= j, H − Ei − Ej ∈ Eω, so that ω(H − Ei − Ej) > 0;
• ω(H − Ei − Ej − Ek) ≥ 0 for any distinct i, j, k.

Reduced bases always exist, see [31] for more details. We remark that a reduced basis is
not necessarily unique, however, the symplectic areas of its classes

(ω(H), ω(E1), · · · , ω(EN ))

uniquely determine the symplectic structure ω up to symplectomorphisms, cf. [25].
Secondly, we recall the following technical result concerning reduced bases, which will

be used in Section 5.
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Lemma 3.2. (cf. [25]) Let N ≥ 2. Then for any ω-compatible almost complex struc-
ture J , any class E ∈ Eω of minimal symplectic area can be represented by an embed-
ded J-holomorphic sphere. In particular, for N ≥ 3, the class EN in a reduced basis
H,E1, · · · , EN can be represented by a J-holomorphic (−1)-sphere for any J .

With the preceding understood, we fix a reduced basis H,E1, · · · , EN of (X,ω). Then
for any A ∈ H2(X), we can write

A = aH −
N∑
i=1

biEi, where a, bi ∈ Z.

We first derive some general constraints on the coefficients a and bi when A is represented
by a connected, embedded symplectic surface, particularly, when A is the class of a
symplectic (−α)-sphere for α > 1. These constraints are consequences of the fundamental
work of Li-Liu [30] and Li-Li [26] on symplectic rational 4-manifolds.

First of all, a few useful facts. For a generic ω-compatible almost complex structure
J , the class H and any class E ∈ Eω can be represented by a J-holomorphic sphere (cf.
[29]). In particular, this implies that for any E ∈ Eω, where E 6= Ei, 1 ≤ i ≤ N , the

coefficients in E = aH −
∑N
i=1 biEi satisfy a > 0, bi ≥ 0 for all i by the positivity of

intersection of J-holomorphic curves. Similarly, if A = aH −
∑N
i=1 biEi is the class of a

connected, embedded symplectic surface with A2 ≥ 0, then by choosing an ω-compatible
almost complex structure J such that the symplectic surface is J-holomorphic, we see
easily that a > 0 and bi ≥ 0 for all i.

The situation is more subtle when A2 < 0 and A is not a class in Eω. We begin with
the following lemma.

Lemma 3.3. Suppose A = aH −
∑N
i=1 biEi is the class of a connected, embedded sym-

plectic surface of genus g.

(1) If a > 0, then bi ≥ 0 for all i.
(2) The a-coefficient of A satisfies the following inequality: (a− 1)(a− 2) ≥ 2g, with

“=” if and only if bi = 0 or 1 for all i.

Proof. For part (1), we begin by noting that the genus g of the symplectic surface repre-
senting A is given by the adjunction formula

g =
1

2
(A2 + c1(Kω) ·A) + 1.

Suppose to the contrary that a > 0 but bk < 0 for some k. Then we consider the reflection
R(Ek) on H2(X) defined by the class Ek, where

R(Ek)β = β + 2(β · Ek)Ek, ∀β ∈ H2(X).

If we let Ã be the image of A under R(Ek) and write Ã = ãH −
∑N
i=1 b̃iEi, then ã =

a, b̃k = −bk > 0, and b̃i = bi for all i 6= k. It follows easily that Ã2 = A2 and
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c1(Kω) · Ã − c1(Kω) · A = 2b̃k > 0. Finally, since R(Ek) is induced by an orientation-

preserving diffeomorphism of X (cf. [26]), the class Ã is represented by a smoothly
embedded, connected surface of genus g.

Now the condition a > 0 enters the argument. Pick a sufficiently small ε > 0, and let

e := H −
∑N
i=1 εEi ∈ H2(X,R). Then a > 0 implies that e · Ã = a −

∑N
i=1 εb̃i > 0 for

sufficiently small ε > 0. On the other hand, we claim that e lies in the symplectic cone
associated to the symplectic canonical class c1(Kω). To see this, we only need to verify
that (i) e2 = 1−Nε2 > 0, which is obviously true when ε > 0 is sufficiently small, and (ii)

e ·E > 0 for any class E ∈ Eω (cf. [30]). To see (ii) is true, we write E = uH−
∑N
i=1 viEi.

Then u2 =
∑
i v

2
i − 1 and u ≥ 0, and e · E = u − ε

∑
i vi. If E = El for some l, then

e · E = ε > 0. If u > 0, then e · E =
√∑

i v
2 − 1− ε

∑
i vi > 0 when ε > 0 is sufficiently

small. Hence the claim that e lies in the symplectic cone associated to the symplectic
canonical class c1(Kω).

Now the fact that e · Ã > 0 together with the fact that e lies in the symplectic cone
associated to the symplectic canonical class c1(Kω) imply the following inequality on the

symplectic genus η(Ã) of Ã (cf. [26], Definition 3.1, p. 130):

η(Ã) ≥ 1

2
(Ã2 + c1(Kω) · Ã) + 1.

On the other hand, the minimal genus is bounded from below by the symplectic genus
(cf. [26], Lemma 3.2). Thus g ≥ η(Ã), which implies that c1(Kω) · A ≥ c1(Kω) · Ã, a
contradiction. This finishes off part (1) of the lemma.

For part (2), the adjunction formula A2 + c1(Kω) ·A+ 2 = 2g gives

a2 −
N∑
i=1

b2i − 3a+

N∑
i=1

bi + 2 = 2g.

With
∑N
i=1 b

2
i −
∑N
i=1 bi =

∑N
i=1 bi(bi− 1) ≥ 0, we obtain easily (a− 1)(a− 2) ≥ 2g, with

“=” if and only if bi = 0 or 1 for all i. This finishes off part (2), and the proof of the
lemma is complete. �

The following lemma deals with the case where the a-coefficient of A is negative.

Lemma 3.4. Let A = aH −
∑N
i=1 biEi be the class of a connected, embedded symplectic

surface of genus g such that a < 0. Then

(1) the symplectic surface representing A must be a symplectic (−α)-sphere where
α > 2, i.e, g = 0 and A2 < −2, and

(2) the expression A = aH −
∑N
i=1 biEi must be in the following form:

A = aH + (|a|+ 1)Ej1 − Ej2 − · · · − Ejs , where s = α− 2|a|,

in particular, 2|a| < α. Moreover, Ej1 = E1 and ω(E1) > ω(Ei) for any i > 1.
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Proof. Let b−i = max(0,−bi) and b+i = max(0, bi), and consider the class

Ã = |a|H −
N∑
i=1

(b−i + b+i )Ei.

Since b−i = |bi| when bi < 0 and equals 0 otherwise, and b+i = bi when bi > 0 and equals 0

otherwise, it follows easily that Ã is the image of −A under the action of the composition
of the reflections R(Ek), where k is running over the set of indices such that bk > 0. In

particular, Ã is represented by a smoothly embedded surface of genus g. As in the proof

of the previous lemma, e := H −
∑N
i=1 εEi lies in the symplectic cone associated to the

symplectic canonical class c1(Kω) when ε > 0 is sufficiently small. Furthermore, as a 6= 0,

we have e · Ã > 0, so that

g ≥ η(Ã) ≥ 1

2
(Ã2 + c1(Kω) · Ã) + 1,

where η(Ã) denotes the symplectic genus of Ã (cf. [26]). The above inequality is equivalent
to

−3|a|+
N∑
i=1

(b−i + b+i ) ≤ −A2 + 2g − 2.

On the other hand, the adjunction formula for A gives the equation −3a +
∑N
i=1 bi =

−A2 + 2g − 2, which implies easily, when combined with the above inequality, that∑N
i=1 b

+
i ≤ −A2 + 2g − 2. It follows that

∑N
i=1 b

−
i ≤ 3|a|.

Note that the adjunction formula A2 + c1(Kω) ·A+ 2 = 2g also implies easily that

2g +

N∑
i=1

bi(bi − 1) = a2 − 3a+ 2 = (a− 1)(a− 2) = (|a|+ 1)(|a|+ 2).

(The last equality is due to the assumption that a < 0.) It follows that b−i ≤ |a| + 1 for
each i, and moreover, if b−i = |a| + 1 for some i, then g = 0, and for any j 6= i, bj = 0
or 1. With this understood, we shall next exclude the possibility that b−i ≤ |a| for any i,
using the constraints of symplectic areas for a reduced basis.

Suppose to the contrary that b−i ≤ |a| for all i. Then we will write A as follows:

A = −(|a|H −
N∑
i=1

b−i Ei)−
N∑
i=1

b+i Ei.

Since b−i ≤ |a| for all i and
∑N
i=1 b

−
i ≤ 3|a|, the class |a|H −

∑N
i=1 b

−
i Ei can be written as

a sum of classes of the form H, H−Ei, H−Ei−Ej , or H−Ei−Ej −Ek, where distinct
indices stand for distinct classes. Since all these classes have non-negative symplectic
areas, it follows that ω(A) ≤ 0, which is a contradiction. Hence

A = aH + (|a|+ 1)Ej1 − Ej2 − · · · − Ejs , where s = −A2 − 2|a|.
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In particular, A2 = −2|a| − s < −2, and moreover, 2|a| < −A2. Finally, if there is a class
Ei such that ω(Ej1) ≤ ω(Ei), then

ω(aH + (|a|+ 1)Ej1) ≤ −(|a| − 1)ω(H − Ej1)− ω(H − Ej1 − Ei) < 0,

which implies that ω(A) < 0. It follows easily that Ej1 = E1, and ω(E1) > ω(Ei) for any
i > 1. This finishes the proof. �

In the rest of this section, we shall be focusing on the possible homological expressions
of a symplectic (−α)-sphere, in particular, for α = 2 and 3. The constraints in Lemmas
3.3 and 3.4 allow us to easily determine all the possible expressions of the class A of a
symplectic (−α)-sphere in terms of the reduced basis H,E1, · · · , EN when the a-coefficient
of A is relatively small, say a ≤ 3.

To this end, write A = aH −
∑N
i=1 biEi, and observe that in the following equation

N∑
i=1

bi(bi − 1) = a2 − 3a+ 2 = (a− 1)(a− 2)

which is satisfied by the coefficients a, bi of A, the left-hand side is always a nonnegative,
even integer. In particular, when a = 1 or 2, bi must be either 0 or 1. For a = 0, the
area condition ω(A) > 0 implies that exactly one of the bi’s equals −1 and the rest are
either 0 or 1. For a = 3, exactly one of the bi’s equals either 2 or −1, however, the latter
possibility is ruled out by Lemma 3.3. The rest of the bi’s are either 0 or 1. We summarize
the discussions in the following

Observation: Let A = aH −
∑N
i=1 biEi be the class of a symplectic (−α)-sphere where

a ≤ 3. Then A must take the following expression

A = aH − (a− 1)Ej1 − Ej2 − · · · − Ej2a+α .
If a > 3 but is small, the possibilities for the values of bi can be easily determined.

However, when a is large, though there are only finitely many solutions for the bi’s for a
fixed value of a, it is in general impossible to determine all the possible solutions for the
bi’s. Finally, note that there is no a priori upper bound for the a-coefficient in terms of
N and α.

With this understood, the following technical lemma plays a key role in determining
the expression of A when the a-coefficient is large, for the case where α = 2 or 3.

Lemma 3.5. Let A = aH −
∑N
i=1 biEi be any class which satisfies

A2 = −α, c1(Kω) ·A = α− 2, where α = 2, 3.

If a > 3, then there are at least α+ 7 terms in A with non-zero bi-coefficient.

Proof. We begin by recalling a reduction procedure useful in this kind of problems. For
any distinct indices i, j, k, we set Hijk := H − Ei − Ej − Ek. Then Hijk satisfies the
following conditions:

H2
ijk = −2, c1(Kω) ·Hijk = 0, and ω(Hijk) ≥ 0.
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Furthermore, there is a reflection Rijk on H2(M) associated to Hijk, which is defined by
the following formula:

Rijk(A) := A+ (A ·Hijk)Hijk, ∀A ∈ H2(X).

To ease the notation, let Ã := Rijk(A). Then it is easy to see that

Ã2 = A2, c1(Kω) · Ã = c1(Kω) ·A, and Ã ·Hijk = −A ·Hijk.

The last equality implies that

A = Rijk(Ã) = Ã+ (Ã ·Hijk)Hijk.

Finally, note that the operation Rijk will decrease (resp. increase) the a-coefficient in
the expression of A if and only if A · Hijk < 0 (resp. A · Hijk > 0), where A · Hijk =
a− (bi + bj + bk). See [31] or [3] for further discussions on this reduction procedure.

With the preceding understood, let A = aH −
∑N
i=1 biEi be any class satisfying the

conditions in the lemma, i.e., A2 = −α, c1(Kω) · A = α− 2, where α = 2, 3, and assume
a > 3. Suppose to the contrary that A has no more than α + 6 terms in the expression
with non-zero bi-coefficient.

Claim: There are distinct indices i, j, k such that (i) bi, bj , bk are positive, and (ii)
A ·Hijk = a− (bi + bj + bk) < 0.

Proof of Claim: We shall prove by contradiction. But first, we observe that there are
at least 3 terms in A with the bi-coefficient positive. To see this, note that the conditions
A2 = −α, c1(Kω) ·A = α− 2 easily imply that

N∑
i=1

bi(bi − 1) = (a− 1)(a− 2).

Since a > 3, it follows that for any i, if bi > 0, then bi ≤ a− 1 must be true. Therefore, if

there were at most 2 terms in A with the bi-coefficient positive, then
∑N
i=1 bi ≤ 2(a− 1),

which contradicts −3a+
∑N
i=1 bi = c1(Kω) ·A = α− 2.

With the preceding understood, suppose the claim is not true. Then it follows that
bi+bj +bk ≤ a holds true for any distinct indices i, j, k, where bi, bj , bk are not necessarily
positive or non-zero. Consider first the case where α = 2. Pick a bi-coefficient, say bs,
such that bs > 0. Then we have

N∑
i=1

bi =

N∑
i=1

bi + bs − bs ≤ 3a− bs ≤ 3a− 1,

which is a contradiction to −3a+
∑N
i=1 bi = α− 2 = 0. A similar argument also confirms

the claim for α = 3. This finishes off the proof of the claim.

Now going back to the proof of the lemma, we pick the indices i, j, k given by the claim
above, and perform the operation Rijk to reduce A to Ã := Rijk(A), which continues to
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obey the conditions on A, i.e.,

Ã2 = −α and c1(Kω) · Ã = α− 2.

Set c := bi + bj + bk − a. We shall derive an upper bound on c. To this end, note that

bi(bi − 1) + bj(bj − 1) + bk(bk − 1) ≤ (a− 1)(a− 2).

Using the inequality 3(b2i + b2j + b2k) ≥ (bi + bj + bk)2, we obtain

bi + bj + bk
3

(
bi + bj + bk

3
− 1) ≤

b2i + b2j + b2k
3

− bi + bj + bk
3

≤ 1

3
(a− 1)(a− 2).

Since a > 3, this gives
bi+bj+bk

3 − 1 ≤ 1√
3
(a− 2), and consequently, c ≤

√
3(a− 2) + 3−a.

It follows that the a-coefficient of Ã, denoted by ã, will be at least 2, because

ã = a− c ≥ (2−
√

3)a+ 2
√

3− 3 ≥ (2−
√

3)× 4 + 2
√

3− 3 = 5− 2
√

3 > 1.

Finally, because bi, bj , bk are non-zero, this operation does not introduce any new terms

with non-zero bi-coefficient, so Ã continues to have no more than α + 6 terms in its
expression with non-zero bi-coefficient.

After finitely many steps, we will arrive at a class, continuing to be denoted by Ã,
whose a-coefficient lies in the range 2 ≤ ã ≤ 3. We may assume Ã is the first class
whose a-coefficient lies in this range; in particular, the a-coefficient of the previous class,
denoted by A, obeys a > 3. We shall examine Ã according to the value of ã below.
To this end, we denote by b̃i the bi-coefficients of Ã. Then it is helpful to observe that
b̃i + b̃j + b̃k − ã = −c < 0, because of the relation Ã ·Hijk = −A ·Hijk.

Suppose ã = 2. Then Ã = 2H − Ej1 − · · · − Ejα+4 . The condition a > 3 requires

that in this case we must have c ≥ 2, and consequently, b̃i + b̃j + b̃k − ã = −c ≤ −2.

Since the bi-coefficients of Ã are non-negative and ã = 2, it follows that b̃i = b̃j = b̃k = 0
and c = ã = 2 must be true. In particular, the indices i, j, k are not appearing in the
expression of Ã, and it follows that A takes the form

A = 4H − 2Ei − 2Ej − 2Ek − Ej1 − · · · − Ejα+4
, where js 6= i, j, k,

which has α+ 7 terms with non-zero bi-coefficient, contradicting the assumption.
Suppose ã = 3. Then the expressions for Ã are

Ã = 3H − 2Ej1 − · · · − Ejα+6 or Ã = 3H − Ej1 − · · · − Ejα+8 + Ejα+9 .

The latter case is ruled out immediately as Ã has α + 9 many terms with non-zero bi-
coefficient. For the former case, we note that with ã = 3, c ≥ 1, b̃i + b̃j + b̃k ≤ 3− 1 = 2.

It follows easily that the following are the only possibilities for b̃i, b̃j , b̃k:

(b̃i, b̃j , b̃k) = (2, 0, 0), (1, 1, 0), (1, 0, 0), (0, 0, 0).

With this understood, note that bl = b̃l + c for l = i, j, k. Since at least one of b̃i, b̃j , b̃k
is zero, it follows that the number of terms in the expression of A with non-zero bi-
coefficient is at least 1 more than the number of terms with non-zero bi-coefficient in Ã.
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Now Ã has α + 6 many terms of non-zero bi-coefficient, so A must have at least α + 7
many terms, which is a contradiction. This completes the proof of the lemma. �

With the preceding understood, we now state a lemma which is of fundamental im-
portance for our project on symplectic Calabi-Yau 4-manifolds. The key observation is
that, when combined with Lemma 3.5, the area condition ω(A) < −c1(Kω) · [ω] will give
severe constraints on the a, bi-coefficients of A; in particular, it implies an upper bound
on the a-coefficient of A in terms of N for the case of α = 2 or 3.

Lemma 3.6. Let A = aH −
∑N
i=1 biEi be the class of a symplectic (−α)-sphere where

α = 2 or 3, such that ω(A) < −c1(Kω) · [ω]. Then A must be of the following form

A = aH − (a− 1)Ej1 − Ej2 − · · · − Ej2a+α .

In particular, a ≤ 1
2 (N − α).

Proof. It suffices to only consider the situation where a > 3. First, note that by Lemma
3.3, bi ≥ 0 for all i. If we let b+i = max(1, bi), then b+i = bi when bi > 0 and b+i = 1 when

bi = 0. Next we observe that −3a+
∑N
i=1 bi = α− 2. Let n be the number of bi’s which

are non-zero. Then because n ≥ α+ 7 by Lemma 3.5, we have

N∑
i=1

(b+i − 1) =

N∑
i=1

bi − n = 3a+ α− 2− n ≤ 3(a− 3).

On the other hand, we claim that there must be one bi such that bi = a− 1. Suppose
to the contrary that this is not true. Then for each i, b+i − 1 ≤ a− 3 must be true. With
this understood, note that the class (a− 3)H −

∑
i(b

+
i − 1)Ei can be written as a sum of

classes of the form H, H −Ei, H −Ei −Ej , or H −Ei −Ej −Ek, where distinct indices

stand for distinct classes, because
∑N
i=1(b+i −1) ≤ 3(a−3), and for each i, b+i −1 ≤ a−3.

However, observe that we can write

A = −c1(Kω) + (a− 3)H −
N∑
i=1

(b+i − 1)Ei +

N∑
i=1

max(0, 1− bi)Ei,

from which it follows easily that ω(A) ≥ −c1(Kω) · [ω], contradicting the area assumption
in the lemma. Hence the claim.

Now we observe that in the equation
∑N
i=1 bi(bi− 1) = (a− 1)(a− 2) which is satisfied

by the a, bi-coefficients of A, if bi = a− 1 for some i, then the rest of the bi’s are all equal

to either 0 or 1. With this understood, the equation −3a+
∑N
i=1 bi = α− 2 implies that

the number of bi’s equaling 1 must be 2a + α − 1. It follows immediately that A must
take the expression

A = aH − (a− 1)Ej1 − Ej2 − · · · − Ej2a+α .

�
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We remark that if A is the class of a symplectic (−α)-sphere whose a-coefficient satisfies
a > 3 and there are at least α + 7 terms in the expression of A having non-zero bi-
coefficients, then the same proof shows that the condition ω(A) < −c1(Kω) · [ω] would
imply that A also takes the special expression in Lemma 3.6. However, in general it is
not true that there are always at least α + 7 terms having non-zero bi-coefficients in the
expression of a symplectic (−α)-sphere. For example, the following class, which has only
10 terms with non-zero bi-coefficients, can be represented by a symplectic (−4)-sphere
(cf. [13]): A = 6H − 2Ej1 − 2Ej2 − · · · − 2Ej10 .

4. Nonexistence of certain symplectic configurations

In this section, we give several results concerning nonexistence of certain configura-
tions of symplectic surfaces in rational 4-manifolds. To prove these results, we examine
the possible homological expressions of the components in the configurations in a certain
reduced basis, using the constraints established in Section 3, and show that the configu-
rations can not exist even at the homology level. These nonexistence results will then be
used in Section 5 to eliminate several possibilities of the fixed-point set structure obtained
in Section 2 concerning the 2-dimensional fixed components, which have resisted all the
known obstructions available so far.

First, we prove a lemma which allows us to impose certain auxiliary area conditions.

Lemma 4.1. Let (X,ω) be a symplectic 4-manifold, and let D = tiDi ⊂ X, where
each Di = ∪jCij is a configuration of symplectic surfaces intersecting transversely and
positively according to a negative definite plumbing graph Γi. Then for any given collection
of positive real numbers {aij}, there exists a δ0 > 0, such that for any choice of {δi} where

0 < δi < δ0, there is a symplectic 4-manifold (X̃, ω̃) with D ⊂ X̃, which has the following
significance:

• D = tiDi is a set of symplectic configurations in (X̃, ω̃), and there is a diffeo-

morphism ψ : X̃ → X which is identity on D, such that ψ∗c1(Kω) = c1(Kω̃),
• the ω̃-symplectic area of each surface Cij equals δiaij, i.e., ω̃(Cij) = δiaij.

Proof. First of all, we may assume without loss of generality that the intersections of
Cij are ω-orthogonal, because we can always slightly perturb the symplectic surfaces to
achieve this (cf. [22]). With this understood, since the plumbing graph Γi is negative
definite, each configuration Di has a regular neighborhood Ui such that Li := ∂Ui is a
convex contact boundary (in the strong sense), cf. [20]. Furthermore, by a theorem of
Park and Stipsicz [36], the contact structure on Li is the Milnor fillable contact structure
(cf. [4]). We denote by αi the contact form on Li, where ω = dαi on Li. It is clear that
we can arrange so that {Ui} are disjoint in X.

Now for any given collection of positive real numbers {aij}, let (U ′i , ω
′
i) be a convex

regular neighborhood of Di = ∪jCij constructed in [20] such that ω′i(Cij) = aij . Fixing
an identification ∂U ′i = Li, we let α′i denote the contact form on Li such that ω′i = dα′i on
Li. Then by [36], α′i = efiαi for some smooth function fi on Li. With this understood,
we set δ0 > 0 by the condition δ−1

0 := maxi{supx∈Li e
fi(x)}.
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Given any {δi} where 0 < δi < δ0, we set Ci := log δi. Then it is easy to see that
Ci + fi(x) < 0 for any x ∈ Li. With this understood, we let

Wi := {(x, t) ∈ Li × R|Ci + fi(x) ≤ t ≤ 0},
given with the symplectic structure d(etαi). We define (Ũi, ω̃i) to be the symplectic 4-
manifold obtained by gluing (U ′i , δiω

′
i) to Wi via the contactomorphism sending x ∈ Li =

∂U ′i to (x,Ci + fi(x)) ∈ Wi. Note that each (Ũi, ω̃i) has a convex contact boundary

∂Ũi = Li where ω̃i = dαi on Li. With this understood, we define (X̃, ω̃) to be the

symplectic 4-manifold obtained by removing ∪iUi from X and then gluing back ∪iŨi
along ∪iLi. It is easy to see that there is a diffeomorphism ψ : X̃ → X which is identity
on D, such that ψ∗c1(Kω) = c1(Kω̃), and the ω̃-symplectic area of each surface Cij equals
δiaij . This finishes the proof of the lemma. �

The second lemma contains two useful observations. In particular, the first observation
implies that in a configuration of symplectic surfaces there is at most one symplectic sphere
with negative a-coefficient.

Lemma 4.2. (1) Let A1, A2 be the classes of two symplectic spheres whose a-coefficients
are negative. Then A1 ·A2 < 0.

(2) Let B = aH −
∑N
i=1 biEi be a nonzero class satisfying B2 = c1(Kω) · B = 0. If

a ≥ 0, then a ≥ 3. Moreover, for a = 3, the following are the only possible expressions
for B:

B = 3H − Ej1 − · · · − Ej9 .

Proof. For (1), let a1, a2 be the a-coefficients of A1, A2 respectively, which are negative
by assumption. Then it follows easily from the expression in Lemma 3.4 that

A1 ·A2 ≤ a1a2 − (|a1|+ 1)(|a2|+ 1) = −(|a1|+ |a2|+ 1) < 0.

For (2), we first note that B 6= 0 and B2 = 0 imply easily that a 6= 0 in B. With this
understood, we note that the conditions B2 = c1(Kω) ·B = 0 are equivalent to

a2 −
N∑
i=1

b2i = −3a+

N∑
i=1

bi = 0.

It follows easily that a(a− 3) =
∑N
i=1 bi(bi − 1) ≥ 0. With the assumption that a ≥ 0, it

follows immediately that a ≥ 3. Moreover, if a = 3, each bi must be either 0 or 1, from
which the expression of B follows easily. This finishes the proof of the lemma. �

With these preparations, we now prove the aforementioned nonexistence results.

Proposition 4.3. Let {Bi} be a nonempty set of disjoint symplectic surfaces in X =

CP2#10CP2, where there is at most one spherical component, and F1, F2, F3 be a disjoint
union of symplectic (−3)-spheres in the complement of Bi, such that

c1(KX) = −2

3

∑
i

Bi −
1

3
(F1 + F2 + F3).
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Suppose F4,1, F4,2 are a pair of symplectic (−2)-spheres in the complement of Bi and
F1, F2, F3, such that F4,1, F4,2 intersect transversely and positively at one point. Then
{Bi} must consist of one component which is a torus.

Proof. First of all, since c1(KX) is represented by F1, F2, F3 and Bi, which are disjoint
from the two (−2)-spheres F4,1, F4,2, it is clear that, by Lemma 4.1, we may assume
without loss of generality that the following area condition holds:

ω(F4,1) = ω(F4,2) < −c1(KX) · [ω].

Then by Lemma 3.6, the a-coefficients of F4,1, F4,2 lie in the range 0 ≤ a ≤ 4, and
moreover, their classes take the special form in Lemma 3.6. Furthermore, again by Lemma
4.1, we can also arrange so that F1, F2, F3 have the same area, which is sufficiently small,
so that ω(Fk) < ω(Bi) for each i, k.

With this understood, we next derive some basic information aboutBi. First, c1(KX) =
− 2

3

∑
iBi −

1
3 (F1 + F2 + F3) implies that c1(KX)2 = 4

9

∑
iB

2
i − 1, and with X =

CP2#10CP2, it follows easily that
∑
iB

2
i = 0. On the other hand, if we denote by gi the

genus of Bi, then the adjunction formula applied to each Bi gives us − 2
3B

2
i +B2

i = 2gi−2,

which is equivalent to B2
i = 6(gi − 1) for each i. In particular, B2

i < 0 if and only if Bi
is spherical, hence by our assumption, there is at most one component Bi with B2

i < 0,
and such a component must be a (−6)-sphere.

With the preceding understood, we observe that the proposition follows readily if there
is no Bi such that B2

i < 0. Under this condition, it is easy to see that each Bi must be a
torus. To see that there is only one component in {Bi}, we note that by Lemma 4.2(2),
the a-coefficient of each Bi is at least 3. On the other hand, each Bi contributes at least
2
3 × 3 = 2 to the a-coefficient of −c1(KX), which equals 3, while the total contribution

from F1, F2, F3 to the a-coefficient of −c1(KX) is at least 1
3 × (−1) = − 1

3 by Lemmas
3.4(2) and 4.2(1). Hence the claim. Therefore, it boils down to show that there is no Bi
such that B2

i < 0.
Suppose to the contrary that there is a component, call it B1, such that B2

1 < 0. Since
b+2 (X) = 1, there must be exactly one Bi, call it B2, such that B2

2 > 0, and the rest
of the Bi’s have B2

i = 0 hence are tori if there is any. Furthermore, as B1 is a (−6)-
sphere, B2 must be a genus-2 surface with B2

2 = 6. By a similar argument analyzing the
contributions of Bi to the a-coefficient of −c1(KX), using Lemmas 3.3 and 4.2, it follows
easily that B1, B2 are the only components in {Bi}. Finally, note that the sum of the
a-coefficients of F1, F2, F3 is at most 3.

Case (1): Suppose a = −2 in B1. Then by Lemma 3.4(2), we can write B1 =
−2H + 3E1 − Ep for some Ep. We consider the possibilities for the classes of F1, F2, F3.
Note that by Lemma 4.2(1), a ≥ 0 in F1, F2, F3. Consequently, a ≤ 3 in F1, F2, F3.
Suppose a = 3 in one of them, say F1. Then B1 · F1 = 0 easily implies that

F1 = 3H − 2E1 − Ei1 − · · · − Ei8 ,
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where Ep does not show up in F1. But this is a contradiction:

ω(F1 −B1) = ω(5H − 5E1 − Ei1 − · · · − Ei8) + ω(Ep) > 0

as the class 5H − 5E1 − Ei1 − · · · − Ei8 can be written as a sum of classes of the form
H − Ei − Ej and H − Ei − Ej − Ek, which all have nonnegative areas. If a = 2 in F1,
then one can check easily that F1 · B1 < 0 is always true. If a = 1 in F1, then F1 must
take the form F1 = H − E1 − Ep − Eq − Er for some Eq, Er. In particular, since F2, F3

are disjoint from F1, we must have a 6= 1 in F2, F3. It follows that both F2, F3 should
have a = 0. Since the sum of the a-coefficients of F1, F2, F3 is always an odd number, it
follows that the sum must equal 1. Consequently, we must have

F1 = H − E1 − Ep − Eq − Er,
and both F2, F3 have zero a-coefficients. It follows that the sum of the a-coefficients of
B1, B2 equals 4, so that a = 6 in B2.

To proceed further, we write B2 = 6H −
∑10
i=1 biEi. Note that B2 has genus 2, so that

c1(KX) ·B2 +B2
2 = 2× 2− 2 = 2. With B2

2 = 6, this implies that

−18 +

10∑
i=1

bi + 6 = 2, 36−
10∑
i=1

b2i = 6.

Consequently,
∑10
i=1 bi(bi − 1) = 16, and as a result, note that bi ≤ 4 for each i. On the

other hand, B2 · B1 = 0, which gives −12 + 3b1 − bp = 0. Since b1 ≤ 4, we must have

bp = 0 and b1 = 4. Then
∑10
i=2 bi(bi − 1) = 16 − 4 × 3 = 4 implies that in b2, · · · , b10,

there are exactly two of them equaling 2; the rest are either 1 or 0. With F1 ·B2 = 0, it
follows easily that

B2 = 6H − 4E1 − Eq − Er − 2Ei1 − 2Ei2 − Ei3 − · · · − Ei6 .
With this understood, we note that

2(B1 +B2) + F1 = 9H − 3E1 − 3Ep − 3Eq − 3Er − 4Ei1 − 4Ei2 − 2Ei3 − · · · − 2Ei6 .

This implies that without loss of generality,

F2 = Ei1 − Ei3 − Ei4 , F3 = Ei2 − Ei5 − Ei6 .
With the preceding understood, let A be the class of any of the (−2)-spheres F4,1,

F4,2. Then recall that because of the area condition we imposed at the beginning, the
a-coefficient of A lies in the range 0 ≤ a ≤ 4, and its expression must be of the form
specified in Lemma 3.6. With this understood, if a = 4 in A, then

A = 4H − 3Ej1 − Ej2 − · · · − Ej10 ,
containing all 10 Ei-classes. It is easy to see that A·F2 6= 0, which rules out this possibility.
If a = 3 in A, then we can write A = 3H − 2Ej1 − Ej2 − · · · − Ej8 . Then B1 · A = 0
implies that Ej1 = E1 must be true, and Ep is not contained in A. With this understood,
A · F2 = A · F3 = 0 implies that one of the Ei-classes in each pair (Ei3 , Ei4), (Ei5 , Ei6)
can not appear in A. Together with Ep, there are 3 Ei-classes not contained in A, which
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is a contradiction as there are only 10 Ei-classes in total. If a = 2 in A, then it is easy to
see that A ·B1 < 0. Hence we must have either a = 1 or a = 0 in A. If a = 1 in A, then
A · B1 = 0 implies that A contains both E1 and Ep. But this leads to A · F1 < 0, which
is a contradiction. This shows that A = Es −Et for some Es, Et. It is easy to check that
there are only 3 possibilities: Eq−Er, Ei3 −Ei4 , and Ei5 −Ei6 . We just showed that the
classes of F4,1, F4,2 must be from the three classes above. But they mutually intersect
trivially with each other, contradicting the fact that F4,1 · F4,2 = 1. Hence Case (1) is
ruled out.

Case (2): Suppose a = −1 in B1. Then B1 = −H + 2E1 − Ex − Ey − Ez for some
Ex, Ey, Ez. Again by Lemma 4.2(1), a ≥ 0 in F1, F2, F3. If a = 3 in F1, then it is
easy to see from F1 · B1 = 0, that E1 must appear in F1 with coefficient −2, and two
of Ex, Ey, Ez can not appear in F1. But F1 contains 9 Ei-classes and there are totally
10 Ei-classes, which is a contradiction. If a = 2 in F1, then F1 · B1 = 0 implies that
F1 = 2H − E1 − Ei1 − · · · − Ei6 . But this gives a contradiction

ω(F1 −B1) = ω(3H − 3E1 − Ei1 − · · · − Ei6) + ω(Ex + Ey + Ez) > 0,

as the class 3H − 3E1 − Ei1 − · · · − Ei6 can be written as a sum of classes of the form
H−Ei−Ej−Ek, which all have nonnegative areas. Consequently, a = 1 in F1 and a = 0
in F2, F3, where

F1 = H − E1 − Ex − Eu − Ev
for some Eu, Ev. By the same argument as in Case (1), the sum of the a-coefficients of
B1, B2 equals 4, so that a = 5 in B2.

Let B2 = 5H −
∑10
i=1 biEi. Then c1(KX) ·B2 +B2

2 = 2 and B2
2 = 6 imply that

−15 +

10∑
i=1

bi + 6 = 2, 25−
10∑
i=1

b2i = 6.

As we argued in Case (1), B2 must have the following expression:

B2 = 5H − 3E1 − Ey − Eu − Ev − 2Ei1 − Ei2 − Ei3 − Ei4 .
After computing 2(B1 + B2) + F1, we see that Ey, Ei1 must be the Ei-classes in F2, F3

which has a (+1)-coefficient. It follows then

F2 = Ey − Ez − Ei4 , F3 = Ei1 − Ei2 − Ei3
without loss of generality.

With the preceding understood, let A be the class of any of the (−2)-spheres F4,1,
F4,2. If a = 4 in A, we have A · F2 6= 0 which is not allowed as in Case (1). If a = 3 in
A, then we can write A = 3H − 2Ej1 − Ej2 − · · · − Ej8 . Then B1 · A = 0 implies that
Ej1 = E1 must be true, and exactly one of Ex, Ey, Ez appears in A. With F2 ·A = 0, we
see that Ex is contained in A. But this leads to A · F1 = −2, which is a contradiction.
To proceed further, we rule out a = 2 in A by a similar argument as in Case (1). Now
suppose a = 1 in A. Then B1 · A = 0 implies that E1 and exactly one of Ex, Ey, Ez
appears in A. Then A · F2 = 0 implies A must contain Ex. But we then get A · F1 < 0
which is a contradiction. This leaves only two possibilities for A: Eu − Ev, Ei2 − Ei3 .
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But these two classes intersect trivially, contradicting F4,1 · F4,2 = 1. Hence Case (2) is
also eliminated.

Case (3): Suppose a = 0 in B1. Then since a ≥ 4 in B2, we see immediately that the
sum of the a-coefficients of F1, F2, F3 is either 1 or −1. In the former case, a = 4 in B2.
If we write B2 = 4H −

∑10
i=1 biEi, then c1(KX) ·B2 +B2

2 = 2 and B2
2 = 6 give

B2 = 4H − 2Ej1 − Ej2 − · · · − Ej7 .

But B1 takes the form of B1 = Ei1 − Ei2 − · · · − Ei6 . The fact that there are totally
10 Ei-classes implies easily that B1 · B2 < 0. In the latter case, a = 5 in B2. But
then by Lemma 3.4(2), exactly one of F1, F2, F3 has a = −1. Suppose it is F1. Then
F1 = −H + 2E1. It is easy to see that F1 · B2 is always odd because the a-coefficient of
B2 is 5. This rules out Case (3).

Case (4): Suppose a = 1 in B1. Then a = 4 in B2 and F1 = −H + 2E1. But note
that B1 · F1 is always odd, hence this is not possible. This rules out Case (4).

Case (5): Suppose a > 1 in B1. Then with a ≥ 4 in B2, the total contribution of
B1, B2 to the a-coefficient of −3c1(KX) is at least 12. But the a-coefficient of −3c1(KX)
is 9, so F1, F2, F3 must contribute −3 to a-coefficient of −3c1(KX). This is not possible
by Lemmas 3.4(2) and 4.2(1). Hence Case (5) is eliminated.

The above discussions show that there is no component Bi with B2
i < 0. Hence the

proposition is proved. �

Proposition 4.4. Let F1, F2, · · · , F9 be a disjoint union of symplectic (−3)-spheres in
a rational 4-manifold X, and let {Bi} be a set of disjoint symplectic surfaces, possibly
empty, which lie in the complement of F1, F2, · · · , F9, such that

c1(KX) = −1

3
(F1 + F2 + · · ·+ F9)− 2

3

∑
i

Bi.

Then {Bi} must be empty if each Bi is a torus of self-intersection zero.

Proof. We shall prove by contradiction. Suppose {Bi} 6= ∅, where each Bi is a torus with

B2
i = 0. We first note that c1(KX)2 = −3 + 4

9

∑
iB

2
i = −3, so that X = CP2#12CP2.

Again, by analyzing the contributions of Bi to the a-coefficient of −c1(KX), it follows
easily that there is only one component in {Bi}, and moreover, the sum of the a-coefficients
of F1, · · · , F9 can be at most 3.

With the preceding understood, the following is the key observation:

The maximal number of disjoint symplectic (−3)-spheres in CP2#12CP2 with a-coefficient
equaling 0 is six, and moreover, such six (−3)-spheres must be of the form:

• Ei1 − Ei2 − Ei3 , Ei2 − Ei3 − Ei4 ,
• Ej1 − Ej2 − Ej3 , Ej2 − Ej3 − Ej4 ,
• Ek1 − Ek2 − Ek3 , Ek2 − Ek3 − Ek4 ,

where i1, i2, i3, i4, j1, j2, j3, j4, k1, k2, k3, k4 are distinct indices.
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To see this, let A = Ei − Ej − Ek, A′ = Er − Es − Et be two distinct symplectic
(−3)-spheres such that A ·A′ = 0. Then it is easy to see that if Er is not contained in A
and Ei not in A′, the indices i, j, k, r, s, t must be distinct. On the other hand, without
loss of generality, assume that Er appears in A, say r = j, then k = s or t must be true.
The above claim follows easily from the fact that we only have these two alternatives.

With the preceding understood, note that by Lemma 3.4(2), a ≥ −1 in each Fk.
Moreover, if a = −1, the class must be −H + 2E1, and there is at most one such (−3)-
sphere in F1, · · · , F9 by Lemma 4.2(1).

We claim that the class A = −H + 2E1 can not be represented by any of the (−3)-
spheres Fk. To see this, note that if A′ is the class of one of Fk which has positive
a-coefficient, then A · A′ 6= 0 unless the a-coefficient of A′ is an even number. Now with
the fact that the sum of the a-coefficients of F1, · · · , F9 can be at most 3, it follows easily
that at least six of the nine (−3)-spheres F1, · · · , F9 have zero a-coefficient. But this is
a contradiction because it is easy to see that A = −H + 2E1 intersects nontrivially with
one of the six (−3)-spheres. Hence the claim that the class A = −H+ 2E1 can not occur.
It follows easily that six of the nine (−3)-spheres F1, · · · , F9 have zero a-coefficient, and
three of them have a-coefficient equaling 1. Moreover, note that the a-coefficient of B
must be 3.

To proceed further, we denote the single component of {Bi} by B. Note that as B is
disjoint from the six (−3)-spheres with zero a-coefficient, it must be the class:

B = 3H − Ei1 − Ei2 − Ei4 − Ej1 − Ej2 − Ej4 − Ek1 − Ek2 − Ek4 .

In other words, the three Ei-classes which are missing from B are Ei3 , Ej3 , Ek3 . With
this understood, let A = H−El1−El2−El3−El4 be any of the three (−3)-spheres whose
a-coefficient equals 1. Then A · B = 0 implies that exactly three of the four Ei-classes
El1 , El2 , El3 , El4 must appear in B. Without loss of generality, let El4 be the one not
contained in B, and without loss of generality, assume El4 = Ei3 . Then since A intersects
trivially with the (−3)-sphere Ei2 − Ei3 − Ei4 , it is easy to see that A must also contain
the class Ei2 . Now with both Ei2 , Ei3 contained in A, the intersection of A with the (−3)-
sphere Ei1 − Ei2 − Ei3 must be negative. This is a contradiction, hence the proposition
is proved. �

Proposition 4.5. Let Fj,1, Fj,2, where 1 ≤ j ≤ 5, be a disjoint union of five pairs of
symplectic (−3)-sphere and (−2)-sphere intersecting transversely and positively at one
point in a rational 4-manifold X, and let {Bi} be a set of disjoint symplectic surfaces,
possibly empty, lying in the complement of Fj,1, Fj,2, such that

c1(KX) = −
5∑
j=1

(
2

5
Fj,1 +

1

5
Fj,2)− 4

5

∑
i

Bi.

Then {Bi} must be empty if each Bi is a torus of self-intersection zero.
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Proof. We prove by contradiction. Suppose to the contrary that {Bi} is nonempty, with
each Bi being a torus of self-intersection zero. Then again, there can be only one compo-
nent in {Bi}. We call it B. Moreover, the a-coefficient of B is either 4 or 3.

Before we proceed further, note that c1(KX)2 = −2, so that X = CP2#11CP2. In
particular, there are only 11 Ei-classes in X.

Case (1): Suppose a = 4 in B. Then if we write B = 4H −
∑11
i=1 biEi, the bi’s satisfy

the following equation: 4(4−3) =
∑11
i=1 bi(bi−1) (see the proof of Lemma 4.2). It follows

easily that

B = 4H − 2Ej1 − 2Ej2 − Ej3 − · · · − Ej10 .

With this understood, note that since the contribution ofB to the a-coefficient of−5c1(KX)
is 16 > 15, it follows easily that there must be a (−3)-sphere Fj,1 having a = −1, with the
remaining four (−3)-spheres having a = 0. By Lemma 3.4(2), the class of the (−3)-sphere
with a = −1 must be −H+2E1, and since its intersection with B is zero, either E1 = Ej1
or E1 = Ej2 must be true. Without loss of generality, assume Ej1 = E1. Then it is clear
that none of the four (−3)-spheres with a = 0 can contain the class E1 = Ej1 .

With the preceding understood, it is easy to see that the expressions of the four (−3)-
spheres with a = 0 fall into the following two possibilities without loss of generality:

(!) Ei1 − Ei2 − Ei3 , Ei2 − Ei3 − Ei4 , Ei5 − Ei6 − Ei7 , Ei6 − Ei7 − Ei8 ,
(!!) Ei1 − Ei2 − Ei3 , Ei2 − Ei3 − Ei4 , Ei5 − Ei6 − Ei7 , Ei8 − Ei9 − Ei10 .

Suppose we are in case (!). Consider the pair of (−3)-spheres Ei1 − Ei2 − Ei3 and Ei2 −
Ei3 − Ei4 . If the class Ei1 is not contained in the expression of B, then it is easy to see
that none of the four classes Ei1 , Ei2 , Ei3 , Ei4 are contained in B. But this contradicts
the fact that there are only 11 Ei-classes in total. Hence Ei1 must be contained in B.
We know that Ei1 6= Ej1 . If Ei1 = Ej2 , then both Ei2 , Ei3 are contained in B, and it
follows that Ei4 does not show up in the expression of B. On the other hand, if Ei1 = Ejs
for some s > 2, then it is easy to see that Ei3 can not show up in B. In any event,
one of Ei3 , Ei4 does not appear in the expression of B. With this understood, the same
argument shows that one of Ei7 , Ei8 also does not appear in the expression of B. But
this clearly contradicts the fact that there are totally only 11 Ei-classes, hence case (!) is
not possible. The argument for case (!!) is similar. First, note that one of Ei3 , Ei4 does
not appear in B as we have argued in case (!). Secondly, consider the pair of (−3)-spheres
Ei5 − Ei6 − Ei7 and Ei8 − Ei9 − Ei10 . We observe that one of the classes Ei5 , Ei8 is not
equal to Ej2 . Without loss of generality, assume Ei5 6= Ej2 . Then one of Ei6 , Ei7 can not
be contained in B. So totally there are at least 2 Ei-classes not contained in B, which
contradicts the fact that there are only 11 Ei-classes. Hence case (!!) is also not possible.
This rules out Case (1).

Case (2): Suppose a = 3 in B. Then by Lemma 4.2(2), B = 3H − Ej1 − · · · − Ej9 .
With this understood, we first observe that the class −H + 2E1 intersects nontrivially
with B, so none of the five (−3)-spheres can have a < 0. On the other hand, from the
proof of Proposition 4.4, it is easy to see that the five (−3)-spheres can not all have a = 0.
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Now observe that the contribution of B to the a-coefficient of −5c1(KX) is 12. It follows
easily that exactly one of the five (−3)-spheres has a = 1, and the other four all have
a = 0. The possible expressions of the four (−3)-spheres with a = 0 are given in either (!)
or (!!) listed in Case (1). In the second case (!!), it is easy to see that there are three Ei-
classes in the four (−3)-spheres with a = 0 which do not show up in B. This contradicts
the fact that there are only 11 Ei-classes, hence (!!) is not possible. In case (!), it is easy
to see that Ei3 , Ei7 are precisely the two Ei-classes that are not in the expression of B.
To derive a contradiction, we consider the (−3)-sphere with a = 1. We write its class as
A = H − El1 − El2 − El3 − El4 . Then we note that one of Ei1 and Ei5 , say Ei1 , must
appear in the above expression. It follows that Ei1 , Ei2 , Ei4 must all appear in A, but not
Ei3 . Without loss of generality, assume {Ei1 , Ei2 , Ei4} = {El1 , El2 , El3}. Then A ·B = 0
implies easily that El4 can not show up in B. It follows that El4 = Ei7 must be true.
But this implies that A has nonzero intersection with the (−3)-sphere Ei5 − Ei6 − Ei7 ,
which is a contradiction. Hence (!) is also not possible. This rules out Case (2) as well,
and the proof of the proposition is complete. �

5. The proof of main theorems

We begin with the key technical lemma, which classifies the possible homological ex-
pressions of a disjoint union of 8 symplectic (−2)-spheres in CP2#9CP2 under a very
delicately chosen assumption on the symplectic structure.

Lemma 5.1. Let F1, F2, · · · , F8 be a disjoint union of 8 symplectic (−2)-spheres in X =

CP2#9CP2. Suppose the symplectic structure ω obeys the following constraints:

• one of Fk has ω-area δ1, the remaining seven have ω-area δ2;
• δ2 < δ1 < 2δ2, and 7δi < −c1(KX) · [ω] for i = 1, 2.

Then for any given reduced basis H,E1, E2, · · · , E9 of (X,ω), there are three possibilities
for the classes of F1, F2, · · · , F8:

(a) F1 = 3H − 2Ei1 − Ei2 − · · · − Ei7 − Ei8 , and F2 = H − Ei2 − Ei3 − Ei4 , F3 =
H − Ei2 − Ei5 − Ei6 , F4 = H − Ei2 − Ei7 − Ei8 , F5 = H − Ei3 − Ei5 − Ei7 ,
F6 = H −Ei3 −Ei6 −Ei8 , F7 = H −Ei4 −Ei5 −Ei8 , F8 = H −Ei4 −Ei6 −Ei7 .

(b) F1 = H −El1 −El2 −El3 , F2 = H −El1 −El4 −El5 , F3 = H −El1 −El6 −El7 ,
F4 = H −El2 −El4 −El6 , F5 = H −El3 −El5 −El6 , F6 = H −El2 −El5 −El7 ,
F7 = H − El3 − El4 − El7 , and F8 = El8 − El9 .

(c) F1 = H −El1 −El2 −El3 , F2 = H −El1 −El4 −El5 , F3 = H −El1 −El6 −El7 ,
F4 = H − El1 − El8 − El9 , F5 = El2 − El3 , F6 = El4 − El5 , F7 = El6 − El7 ,
F8 = El8 − El9 .

Proof. By Lemma 3.6, a ≤ 3 in each Fk.

Case (1): Suppose there is a Fk whose a-coefficient equals 3. We may assume without
loss of generality that it is F1, and write

F1 = 3H − 2Ei1 − Ei2 − · · · − Ei7 − Ei8 .
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Furthermore, we denote by Ei9 the unique Ei-class that is missing in F1.
Let A be the class of any of the remaining (−2)-spheres, i.e., F2, F3, · · · , F8. Our first

observation is that a 6= 3 in A. To see this, we note that if the a-coefficient of A equals
3, then A ·F1 = 0 implies that A must take the following form without loss of generality:

A = 3H − Ei1 − 2Ei2 − · · · − Ei7 − Ei9 .

With this understood, we observe that

F1 +A+ c1(KX) = 3H − 2Ei1 − 2Ei2 − Ei3 − Ei4 − · · · − Ei7 ,

which can be written as a sum of three terms of the form H − Ei − Ej − Ek. It follows
that ω(A+ F1) ≥ −c1(KX) · [ω], which is a contradiction. Hence the claim.

To proceed further, we first examine the classes A whose a-coefficient equals 1. Note
that if A is a class with a = 1, then A · F1 = 0 implies that if Ei1 appears in A, then so
does Ei9 . This allows us to divide the classes A with a = 1 into two types:

(α) A = H − Ei1 − Ei9 − Ex, (β) A = H − Er − Es − Ex,

where Ex, Er, Es ∈ {Ei2 , Ei3 , · · · , Ei8}.
Claim: There are no classes A with a = 2.

Proof of Claim: We first observe that if A is a class with a = 2, then Ei1 is not
contained in A. This is because if Ei1 is contained in A, then A · F1 = 0 implies that Ei9
must also be contained in A, and A takes the following form

A = 2H − Ei1 − Ei9 − Ek1 − Ek2 − Ek3 − Ek4 .

But this would lead to a contradiction

ω(F1 +A) + c1(KX) · [ω] = ω(2H − 2Ei1 − Ek1 − Ek2 − Ek3 − Ek4) ≥ 0,

as 2H − 2Ei1 −Ek1 −Ek2 −Ek3 −Ek4 is a sum of terms of the form H −Ei −Ej −Ek.
With the preceding understood, suppose to the contrary that there is a class A with

a = 2. Then without loss of generality, we may write it as

A1 = 2H − Ei2 − Ei3 − Ei4 − Ei5 − Ei6 − Ei7 .

Moreover, if A is another class of F2, F3, · · · , F8 with a = 2, then it is easy to check that
A1 ·A < 0. Hence A1 is the only one with a = 2.

Next we examine the possible classes of A with a = 1, which intersects trivially with
F1 and A1. It is easy to see that if A is a class with a = 1 and A · A1 = 0, then A can
not be of type (α), and for a type (β) class, A must contain Ei8 . It is easy to see that
maximally, there are three such type (β) classes that are mutually disjoint, i.e.,

A2 = H − Ei2 − Ei3 − Ei8 , A3 = H − Ei4 − Ei5 − Ei8 , A4 = H − Ei6 − Ei7 − Ei8
without loss of generality. The remaining three classes of A must all have a-coefficient
equaling 0, and it is easy to see that, without loss of generality, they are

A5 = Ei2 − Ei3 , A6 = Ei4 − Ei5 , A7 = Ei6 − Ei7 .
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To derive a contradiction, we appeal to the area constraints. First, we observe that the
area of F1 must be greater than the area of any of A5, A6, A7. For example,

ω(F1 −A5) = ω(3H − 2Ei1 − 2Ei2 − Ei4 − Ei5 − · · · − Ei8) ≥ 0

as 3H − 2Ei1 − 2Ei2 − Ei4 − Ei5 − · · · − Ei8 is a sum of terms of the form H − Ei −
Ej − Ek. Furthermore, note that if ω(F1 − A5) = 0, then ω(H − Ex − Ey − Ez) = 0
for any three classes Ex, Ey, Ez from the set {Ei1 , Ei2 , Ei4 , Ei5 , · · · , Ei8}. In particular,
Ei4 , Ei5 , Ei6 , Ei7 have the same area, contradicting ω(A6) > 0, ω(A7) > 0. It follows that
ω(F1) = δ1 and the remaining classes have the same area equaling δ2 < δ1. With this
understood, we note that ω(F1 − A5 − A4) = ω(2H − 2Ei1 − 2Ei2 − Ei4 − Ei5) ≥ 0 as
2H−2Ei1−2Ei2−Ei4−Ei5 is a sum of terms of the form H−Ei−Ej−Ek, contradicting
the constraint δ1 < 2δ2. This finishes off the proof of the Claim.

Now back to the discussion on Case (1), we claim that no type (α) classes can occur.
Suppose to the contrary that there is a type (α) class, call it A1. It is easy to see that
any other type (α) class has a negative intersection with A1, hence A1 is the only type
(α) class. Without loss of generality, let A1 = H − Ei1 − Ei9 − Ei8 . Now let A be any
type (β) class such that A ·A1 = 0. Then A must contain Ei8 , and furthermore, it is easy
to see that maximally, there are three such type (β) classes which are mutually disjoint.
Without loss of generality, they are

A2 = H − Ei2 − Ei3 − Ei8 , A3 = H − Ei4 − Ei5 − Ei8 , A4 = H − Ei6 − Ei7 − Ei8

The remaining three classes of A must all have a-coefficient equaling 0, and it is easy to
see that, without loss of generality, they are

A5 = Ei2 − Ei3 , A6 = Ei4 − Ei5 , A7 = Ei6 − Ei7 .

This possibility can be ruled out using the area constraints as we did in the proof of the
Claim. Hence no type (α) classes can occur.

With the preceding understood, we further observe that no class A with a = 0 can
be realized by F2, F3, · · · , F8. Suppose, without loss of generality, A1 = Ei7 − Ei8 is
realized. Let A be a type (β) class which intersects trivially with A1. Then it is easy to
see that either A contains both Ei7 , Ei8 , or A contains neither Ei7 nor Ei8 . It is clear
that there can be at most one type (β) class which contains both Ei7 , Ei8 . Without loss
of generality, we let it be A2 = H − Ei2 − Ei7 − Ei8 . Then any other type (β) classes
which intersect trivially with A1, A2 must contain Ei2 , and there are maximally two such
classes: H−Ei2−Ei3−Ei4 , H−Ei2−Ei5−Ei6 . With this understood, note that there are
at most two other classes, both having a = 0, that are allowed, i.e., Ei3 −Ei4 , Ei5 −Ei6 ,
bringing total number of allowable classes for F2, F3, · · · , F8 to 6. But apparently, there
are not enough many classes, hence our claim.

The above discussions show that the classes of F2, F3, · · · , F8 are all of type (β). With
this understood, we first rule out the possibility that no triple of F2, F3, · · · , F8 shares a
common Ei-class. Suppose to the contrary that this is the case. Then without loss of
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generality, we write

F2 = H − Ei2 − Ei3 − Ei4 , F3 = H − Ei2 − Ei5 − Ei6 .

Note that by our assumption, F4 can not contain Ei2 . With this understood, F4 · F2 =
F4 ·F3 = 0 implies that we may write F4 = H−Ei3 −Ei5 −Ei7 without loss of generality.
Now observe that F5 can not contain Ei2 , Ei3 , Ei5 . Hence F5 = H −Ei4 −Ei6 −Ei7 must
be true. Now examining the class of F6, by our assumption it can not contain any of
Ei2 , Ei3 , · · · , Ei7 . This is clearly a contradiction. Hence the claim.

With the preceding understood, we may write without loss of generality that

F2 = H − Ei2 − Ei3 − Ei4 , F3 = H − Ei2 − Ei5 − Ei6 , F4 = H − Ei2 − Ei7 − Ei8 .

With this given, it is easy to see that the other four (−2)-spheres must be

F5 = H − Ei3 − Ei5 − Ei7 , F6 = H − Ei3 − Ei6 − Ei8 ,

and

F7 = H − Ei4 − Ei5 − Ei8 , F8 = H − Ei4 − Ei6 − Ei7 .
This possibility of classes of F1, F2, · · · , F8 is listed as Case (a) of the lemma.

Case (2): Suppose a ≤ 2 in all eight (−2)-spheres F1, F2, · · · , F8.

(i): Assume at least two of F1, F2, · · · , F8 have a-coefficient equaling 2. Without loss
of generality, let F1, F2 be such two (−2)-spheres. It is easy to see from F1 · F2 = 0 that
F1, F2 must have exactly 4 Ei-classes in common. Hence without loss of generality, we
may write them as

F1 = 2H−Ej1−Ej2−Ej3−Ej4−Ej5−Ej6 , F2 = 2H−Ej1−Ej2−Ej3−Ej4−Ej7−Ej8 .

With this understood, we denote by Ej9 the unique Ei-class that is missing in F1,
F2. Moreover, we denote by A the class of any of the remaining (−2)-spheres, i.e.,
F3, F4, · · · , F8.

Claim: There are no classes A which contains Ej9 .

Proof of Claim: First, it is easy to see that if A is a class with a = 0 which contains
Ej9 , the intersection of A with one of F1, F2 will be nonzero. Now suppose A is a class
with a = 1 which contains Ej9 . Then A · F1 = A · F2 = 0 implies that A must be of the
form A = H − Ex − Ey − Ej9 for some Ex, Ey ∈ {Ej1 , · · · , Ej4}. With this understood,
we note that

F1 + F2 +A+ c1(KX) = 2H − Ej1 − Ej2 − Ej3 − Ej4 − Ex − Ey,

which is a sum of terms of the form H−Ei−Ej−Ek, leading to a contradiction in areas:
ω(F1 + F2 +A) ≥ −c1(KX) · [ω]. Finally, suppose A is a class with a = 2 which contains
Ej9 . Then A · F1 = A · F2 = 0 implies that, without loss of generality,

A = 2H − Ej1 − Ej2 − Ej3 − Ej5 − Ej7 − Ej9 .
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In this case, we have F1+F2+A+c1(KX) = 3H−2Ej1−2Ej2−2Ej3−Ej4−Ej5−Ej7 , which
by the same reason also leads to the contradiction in areas: ω(F1+F2+A) ≥ −c1(KX)·[ω].
Hence the Claim.

Now back to the discussion on Case (2), it is easy to see that there are two other classes
A with a = 2 and trivial mutual intersection, which intersect trivially with F1, F2; we
denote them by A1, A2, where

A1 = 2H−Ej1−Ej2−Ej5−Ej6−Ej7−Ej8 , A2 = 2H−Ej3−Ej4−Ej5−Ej6−Ej7−Ej8 .
On the other hand, let A be a class with a = 1 which intersects trivially with F1, F2.
Then A must be of the form A = H − Er − Es − Et, where Er ∈ {Ej1 , Ej2 , Ej3 , Ej4},
Es ∈ {Ej5 , Ej6}, and Et ∈ {Ej7 , Ej8}.

With the preceding understood, if both of A1, A2 are realized by the (−2)-spheres,
then it is easy to see that no classes A with a = 1 can be realized. On the other hand, it
is easy to see that there are maximally 4 classes A with a = 0:

Ej1 − Ej2 , Ej3 − Ej4 , Ej5 − Ej6 , Ej7 − Ej8 .
Hence all of them must be realized. With this understood, it is easy to see that three
of F1, F2, A1, A2 and all of the classes with a = 0 must have the smaller area δ2. As
a consequence, we may assume without loss of generality that ω(F1) = ω(Ej1 − Ej2).
Then observe that 2H − 2Ej1 − Ej3 − Ej4 − Ej5 − Ej6 is a sum of terms of the form
H − Ei − Ej − Ek, so that

ω(2H − 2Ej1 − Ej3 − Ej4 − Ej5 − Ej6) = ω(F1)− ω(Ej1 − Ej2) = 0

implies that Ej3 , Ej4 , Ej5 , Ej6 have the same area. But this contradicts the fact that the
classes Ej3 − Ej4 , Ej5 − Ej6 are realized by the symplectic (−2)-spheres. It follows that
A1, A2 can not be both realized.

Suppose only one of A1, A2, say A1, is realized. Then there are four classes A with
a = 1 that are possible, i.e.,

A3 = H − Ej3 − Ej5 − Ej7 , A4 = H − Ej3 − Ej6 − Ej8 ,
and

A5 = H − Ej4 − Ej5 − Ej8 , A6 = H − Ej4 − Ej6 − Ej7 .
If all of A3, A4, A5, A6 are realized, then the remaining (−2)-sphere must have a-coefficient
equaling 0, and it must be the class A7 = Ej1 − Ej2 without loss of generality. But this
leads to a contradiction in areas as follows: note that

ω(F1 −A7) = ω(2H − 2Ej1 − Ej3 − Ej4 − Ej5 − Ej6) ≥ 0

as 2H − 2Ej1 − Ej3 − Ej4 − Ej5 − Ej6 is a sum of terms of the form H − Ei − Ej − Ek.
Furthermore, if ω(F1 − A7) = 0, the four classes Ej3 , Ej4 , Ej5 , Ej6 must have the same
area. It follows easily that ω(A7) = δ2 < δ1. The same argument applies with F1 being
replaced by F2 or A1. Note that at least two of F1, F2, A1 must have the smaller area
δ2. It follows easily that the six classes Ej3 , Ej4 , Ej5 , Ej6 , Ej7 , Ej8 must have the same
area. But this would imply that all the eight (−2)-spheres have the same area, which
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is a contradiction. Finally, note that if any of A3, A4, A5, A6 is realized, A7 is the only
possible class with a = 0. If none of A3, A4, A5, A6 is realized, the allowable classes with
a = 0 are Ej3 − Ej4 , Ej5 − Ej6 , Ej7 − Ej8 , in addition to A7. It follows that neither A1

nor A2 can be realized.
The above discussion shows that F1, F2 are the only two (−2)-spheres with a = 2.

From the discussion, it is also clear that the maximal number of mutually disjoint classes
with a = 1 which intersect trivially with F1, F2 is 4, which, without loss of generality,
are given by A3, A4, A5, A6. If any of them is realized, there is only one possible class
with a = 0, i.e., A7 = Ej1 − Ej2 . If none of the a = 1 classes are realized, then there are
maximally 4 classes with a = 0 that are allowed. In any event, we do not have enough
classes that can be realized. Thus (i) is eliminated.

(ii): Assume only one of F1, F2, · · · , F8 has a-coefficient equaling 2. Without loss of
generality, assume it is F1, and we write

F1 = 2H − Ek1 − Ek2 − Ek3 − Ek4 − Ek5 − Ek6 .

We denote the remaining three Ei-classes by Ek7 , Ek8 , Ek9 , and denote by A the class of
any of the (−2)-spheres F2, F3, · · · , F8.

Examining classes A with a = 1 which intersect trivially with F1, we note that A must
be of the form

A = H − Er − Es − Et, where Er, Es ∈ {Ek1 , · · · , Ek6} and Et ∈ {Ek7 , Ek8 , Ek9}.

Consider first the case where amongst the classes A with a = 1, the Ei-classes
Ek1 , Ek2 , · · · , Ek6 can only appear once. It is easy to see that in this case, all the a = 1
classes must have a common Ei-class which must be one of Ek7 , Ek8 , Ek9 . It is clear that
there are maximally three such classes with a = 1, i.e.,

H − Ek1 − Ek2 − Ek7 , H − Ek3 − Ek4 − Ek7 , H − Ek5 − Ek6 − Ek7
without loss of generality. The remaining four (−2)-spheres must have a-coefficient equal-
ing 0, and they must be

Ek1 − Ek2 , Ek3 − Ek4 , Ek5 − Ek6 , Ek8 − Ek9
without loss of generality. With this understood, we note that the area of F1 must
be the larger δ1, with the remaining seven (−2)-spheres having area δ2. However, as
2H − 2Ek1 − 2Ek3 −Ek5 −Ek6 is a sum of terms of the form H −Ei−Ej −Ek, it follows
that

ω(F1)− ω(Ek1 − Ek2)− ω(Ek3 − Ek4) = ω(2H − 2Ek1 − 2Ek3 − Ek5 − Ek6) ≥ 0,

which contradicts the constraint δ1 < 2δ2. Hence this first case is ruled out.
Next we assume that the Ei-classes Ek1 , Ek2 , · · · , Ek6 can appear at most twice in the

a = 1 classes, and at least one of them, say Ek1 , appeared twice. Then without loss of
generality, we may assume

A1 = H − Ek1 − Ek2 − Ek7 , A2 = H − Ek1 − Ek3 − Ek8
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are realized by the (−2)-spheres. Since there are at most 4 mutually disjoint classes with
a = 0 that can possibly be realized by the (−2)-spheres, we must have another a = 1
class, call it A3. By our assumption, A3 can not contain Ek1 . The fact that A3 intersects
trivially with A1, A2 implies that either A3 = H − Ek2 − Ek3 − Ek9 , or without loss of
generality, A3 = H − Ek3 − Ek4 − Ek7 . In the former case, none of Ek1 , Ek2 , Ek3 can
appear anymore by our assumption, which implies easily that there can be no more a = 1
classes. On the other hand, there is only one possible a = 0 class, say Ek5 − Ek6 . Hence
the former case is not possible. In the latter case, Ek1 , Ek3 , Ei7 can no longer appear.
We note that there is only one possible a = 0 class, i.e., Ek5 − Ek6 , so there must be
three more a = 1 classes. Call them A4, A5, A6. Then observe that A4, A5, A6 intersect
trivially with A2, so all of them must contain Ek8 . Likewise, A4, A5, A6 intersect trivially
with A1, so that they must all contain Ek2 , which is clearly a contradiction. Thus this
second case is also ruled out.

Finally, assume one of the Ei-classes Ek1 , Ek2 , · · · , Ek6 , say Ek1 , appears in the a = 1
classes three times. Without loss of generality, we assume

A1 = H − Ek1 − Ek2 − Ek7 , A2 = H − Ek1 − Ek3 − Ek8 , A3 = H − Ek1 − Ek4 − Ek9
are realized by the (−2)-spheres. Again, there is only one possible a = 0 class, i.e.,
Ek5 − Ek6 , so there must be three more a = 1 classes, which are denoted by A4, A5, A6.
It is easy to see that the following are the only possibility:

A4 = H − Ek3 − Ek4 − Ek7 , A5 = H − Ek2 − Ek4 − Ek8 , A6 = H − Ek2 − Ek3 − Ek9 .

In order to rule out this last case, we observe that

F1 +

6∑
i=1

Ai + c1(KX) = 5H − 3(Ek1 + · · ·+ Ek4)− Ek7 − Ek8 − Ek9 .

The right-hand side is a sum of terms of the form H−Ei−Ej−Ek, hence has non-negative
area. But this leads to a contradiction to the constraint 7δi < −c1(KX) · [ω] for i = 1, 2.
Hence (ii) is also eliminated.

(iii): It remains to consider the case where the a-coefficient of F1, F2, · · · , F8 equals
either 1 or 0. We begin by noting that there are at least four (−2)-spheres with a = 1.

The first possibility is that each Ei-class appears amongst the a = 1 classes at most
three times. To analyze this case, we take two of the (−2)-spheres with a = 1, say F1, F2,
and we write them as

F1 = H − El1 − El2 − El3 , F2 = H − El1 − El4 − El5 .

Assume F3 also has a-coefficient equaling 1. Then there are two possibilities for F3: either
F3 = H −El1 −El6 −El7 or F3 = H −El2 −El4 −El6 without loss of generality. There
is at least one more (−2)-sphere with a = 1, say F4. Then if F3 = H − El1 − El6 − El7 ,
we may assume without loss of generality that F4 = H − El2 − El4 − El6 because of our
assumption that each Ei-class appears amongst the a = 1 classes at most three times. If
F3 = H − El2 − El4 − El6 in the latter case, we may assume F4 = H − El3 − El5 − El6
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(note that the other choice F4 = H − El1 − El6 − El7 is equivalent to the former case).
In any event, with these choices for F1, F2, F3, F4, there can be at most one (−2)-sphere
with a = 0. Consequently, there must be three more (−2)-spheres with a = 1. One can
check easily that without loss of generality, in this case the eight (−2)-spheres are

F1 = H − El1 − El2 − El3 , F2 = H − El1 − El4 − El5 , F3 = H − El1 − El6 − El7 ,

F4 = H − El2 − El4 − El6 , F5 = H − El3 − El5 − El6 , F6 = H − El2 − El5 − El7 ,

F7 = H − El3 − El4 − El7 , and F8 = El8 − El9 ,
which is listed as Case (b) of the lemma.

The remaining possibility is that one of the Ei-classes appears in the a = 1 classes
four times. In this case, it is easy to check that without loss of generality, the eight
(−2)-spheres are

F1 = H − El1 − El2 − El3 , F2 = H − El1 − El4 − El5 , F3 = H − El1 − El6 − El7 ,

F4 = H −El1 −El8 −El9 , F5 = El2 −El3 , F6 = El4 −El5 , F7 = El6 −El7 , F8 = El8 −El9 .
This is listed as Case (c) of the lemma. The proof of the lemma is complete. �

In the following lemma, D ⊂ C is an open disc centered at the origin, with radius
unspecified. Let Ψ : D ×D → C2 be a diffeomorphism onto a neighborhood of 0 ∈ C2,
given by equations z1 = ψ(z, w), z2 = w, where z1, z2 are the standard holomorphic
coordinates on C2 and z, w are a local complex coordinate on the first and second factor
inD×D. Furthermore, assume Ψ satisfies the following conditions: ψ(z, w) is holomorphic
in w ∈ D (but only C∞ in z ∈ D), and ψ(0, w) = 0 for all w ∈ D.

Lemma 5.2. Let C ⊂ C2 be an embedded holomorphic disc containing the origin, where
C intersects the z2-axis with a tangency of order n > 1. Let F : D → C2 be a holomorphic
parametrization of C such that F (0) = 0. Then the map π1 ◦ Ψ−1 ◦ F : D → D is an
n-fold branched covering in a neighborhood of 0 ∈ D, ramified at 0, where π1 : D×D → D
is the projection onto the first factor.

Proof. Considering the parametrization Ψ−1 ◦F of C in the coordinates (z, w), it is clear
that after a re-parametrization of the domain D if necessary, we may assume that Ψ−1◦F
is given by z = f(ξ), w = ξ, where ξ is a local holomorphic coordinate on the domain D.
We remark that Ψ−1 ◦ F is J-holomorphic with respect to the almost complex structure
J on D ×D, where J is the pullback of the standard complex structure on C2 via Ψ.

We shall compute ∂w̄f for the function f , where f is considered a function of w (as
w = ξ). To this end, we set zk = xk+

√
−1yk, k = 1, 2, and z = s+

√
−1t, w = u+

√
−1v.

Then with respect to the coordinates (s, t, u, v) and (x1, y1, x2, y2), the Jacobian of Ψ is
given by the matrix

DΨ =

(
A B
0 I

)
,
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where A =

(
∂x1

∂s
∂x1

∂t
∂y1
∂s

∂y1
∂t

)
, B =

(
∂x1

∂u
∂x1

∂v
∂y1
∂u

∂y1
∂v

)
. Let J0 =

(
0 −1
1 0

)
be the matrix

representing the standard complex structure. Then the assumptions that ψ(z, w) is holo-
morphic in w ∈ D and ψ(0, w) = 0 for all w ∈ D imply that J0B = BJ0 and B = 0 along
the disc z = 0.

With the preceding understood, we note that the almost complex structure J is given
by the matrix

J = DΨ

(
J0 0
0 J0

)
(DΨ)−1 =

(
AJ0A

−1 (−AJ0A
−1 + J0)B

0 J0

)
.

Now the Jacobian of Ψ−1 ◦F is

(
Df
I

)
where Df is the Jacobian of f . If follows easily

that the J-holomorphic equation satisfied by Ψ−1 ◦ F , i.e.,

J

(
Df
I

)
=

(
Df
I

)
J0

is equivalent to the equation Df + (AJ0A
−1) ·Df · J0 = (AJ0A

−1J0 + I)B. Intrinsically,
this can be written as

∂w̄f =
1

2
(AJ0A

−1J0 + I)B.

With the above understood, we note that since B = 0 along the disc z = 0, we have
||B|| ≤ C1|z| near z = 0 for some constant C1 > 0. It follows easily that the function f
obeys the inequality |∂w̄f | ≤ C2|f | for some constant C2 > 0. By the Carleman similarity
principle (e.g. see Siebert-Tian [41], Lemma 2.9), there is a complex valued function g
of class Cα and a holomorphic function φ, such that f(w) = φ(w)g(w), where g(0) 6= 0.
Note that φ vanishes at w = 0 of order n because by the assumption, the holomorphic disc
C intersects the z2-axis with a tangency of order n. After a further change of coordinate,
we may assume that f(w) = wng(w) for a Cα-class function g, where w ∈ D.

Our next goal is to show that for any c 6= 0, with |c| sufficiently small, the equation

f(w) = c

has exactly n distinct solutions lying in a small neighborhood of 0 ∈ D. To see this, we
take h(w) to be an n-th root of the function g(w), i.e., h(w)n = g(w), which is also of
Cα-class. Let λ1, λ2, · · · , λn be the n-th roots of c. For each i = 1, 2, · · · , n, we consider
the equation

wh(w) = λi.

Set P (w) := 1
h(0) (λi−w(h(w)−h(0))). Then the above equation becomes w = P (w). With

this understood, let B(r) ⊂ D be the closed disc of radius r. Then for r > 0 sufficiently
small, P : B(r) → B(r) is a well-defined continuous map, as long as |λi| ≤ 1

2 |h(0)| · r.
Now we pick any w1 ∈ B(r) and define inductively wk+1 = P (wk) for k ≥ 1. Since B(r) is
compact, the sequence {wk} has a convergent subsequence. The limit w0 ∈ B(r) satisfies
the equation w0 = P (w0).
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It follows easily that when c 6= 0 lies in the disc of radius ( 1
2 |h(0)| · r)n, the equation

f(w) = c has at least n distinct solutions, all lying in the disc B(r). The local intersection
number of the holomorphic disc C with each holomorphic disc z = c equals n. This implies
that the equation f(w) = c has precisely n distinct solutions in B(r), and the intersection
of C with each holomorphic disc z = c 6= 0 is transversal. It follows easily that the map
π1 ◦Ψ−1 ◦F : D → D is an n-fold branched covering in a neighborhood of 0 ∈ D, ramified
at 0. This finishes the proof. �

With these preparations, we now prove the main theorems.

Proof of Theorem 1.1:

We first consider the case where MG is irrational ruled. It is easily seen that there is a
subgroup H of prime order p such that MH is irrational ruled. By Lemma 2.2 and Lemma
2.6(i), the fixed-point set of H consists of only tori of self-intersection zero. Moreover,
from the proofs it is known that MH is a S2-bundle over T 2, and M is simply a branched
cover of MH along the fixed-point set.

With this understood, we denote by {Bi} the image of the fixed-point set of H in
MH , which is a disjoint union of symplectic tori of self-intersection zero. Let F be the
fiber class of the S2-fibration on MH . Then we note that c1(KMH

) = 1−p
p

∑
iBi (cf.

Proposition 3.2 in [7]), and c1(KMH
) · F = −2. It follows easily that p = 2 or 3, and

(
∑
iBi) · F = 4 or 3 accordingly.
To proceed further, we choose an ω-compatible almost complex structure J on MH ,

where ω denotes the symplectic structure on MH , such that J is integrable in a neighbor-
hood of each Bi. Note that this is possible because ω admits a standard model near each
Bi. Now by Gromov’s theory, there exists a S2-bundle structure on MH , with base T 2

and each fiber J-holomorphic. We denote by π : MH → T 2 the corresponding projection
onto the base. Then by Lemma 5.2, the restriction π|Bi : Bi → T 2 is a branched covering
where the ramification occurs exactly at the non-transversal intersection points of Bi with
the fibers. But each Bi is a torus, so that π|Bi must be unramified, or equivalently, Bi
intersects each fiber transversely. With this understood, it follows easily that the pre-
image of each fiber of the S2-bundle in M is a symplectic torus (here we use the fact that
(
∑
iBi) · F = 4 or 3 respectively according to whether p = 2 or 3), giving M a structure

of a T 2-bundle over T 2 with symplectic fibers. This finishes the proof for the case where
MG is irrational ruled.

Next we assume MG is rational and G = Z2. By Lemma 2.3 and Lemma 2.6(ii), the
fixed-point set MG consists of 8 isolated points and a disjoint union of 2-dimensional
components {Yi}, where

∑
i Y

2
i = 2(1− b−2 (M/G)), and b−2 (M/G) ∈ {0, 1, 2}. We denote

by Bi the image of Yi in MG. Then B2
i = 2Y 2

i for each i, and c1(KMG
) = − 1

2

∑
iBi (cf.

[7], Proposition 3.2), so that

c1(KMG
)2 =

1

4

∑
i

B2
i = 1− b−2 (M/G).
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It follows easily that MG = CP2#NCP2 where N = 8, 9 or 10, corresponding to
b−2 (M/G) = 0, 1 or 2 respectively. Moreover, note that MG contains 8 symplectic (−2)-
spheres coming from the resolution of the 8 isolated singular points of M/G.

By Theorem 1.4, the case where MG = CP2#8CP2 is immediately ruled out. The
case where MG = CP2#10CP2 is ruled out as follows. We consider the double branched
cover Z of MG with branch loci {Bi}. Then Z is easily seen a symplectic Calabi-Yau
4-manifold with b1 = 0, which is an integral homology K3 surface (compare [8], Theorems
1.1 and 1.2). Note that Z contains 16 embedded (−2)-spheres in the complement of the

branch set. Now observe that in the case of MG = CP2#10CP2,
∑
i Y

2
i = −2, so that

there must be one Yi with Y 2
i < 0. This Yi gives rise to an embedded (−2)-sphere in Z,

in addition to the 16 embedded (−2)-spheres, so that Z contains 17 disjointly embedded
(−2)-spheres. But this contradicts a theorem of Ruberman in [37], which says that an
integral homology K3 surface can contain at most 16 disjointly embedded (−2)-spheres.

Hence MG = CP2#10CP2 is ruled out. Finally, we note that the same argument shows
that in the case of MG = CP2#9CP2, the surfaces Bi must be tori of self-intersection
zero.

We continue by analyzing the case of MG = CP2#9CP2 in more detail. First, we note
that there are at most two components in {Bi}. This is because c1(KMG

) = − 1
2

∑
iBi,

and the a-coefficient of each Bi with respect to a given reduced basis is at least 3 (cf.
Lemma 4.2(2)). Next, we determine the homology classes of the 8 symplectic (−2)-spheres
F1, F2, · · · , F8 in MG. By Lemma 4.1, we can choose a symplectic structure on MG so
that the area constraints in Lemma 5.1 are satisfied. (Note that this is possible because
−c1(KMG

) · [ω] = 1
2

∑
i ω(Bi) > 0.) Then the classes of F1, F2, · · · , F8 are given in 3 cases

as listed in Lemma 5.1. We claim that case (a) and case (b) cannot occur. To see this,
suppose we are in case (a). It is easy to check, with the area constraints in Lemma 5.1,
that the class Ei9 has the smallest area among the Ei-classes in the reduced basis. With
this understood, we choose an almost complex structure J such that each symplectic
(−2)-sphere Fk is J-holomorphic. Then by Lemma 3.2, the class Ei9 can be represented
by a J-holomorphic (−1)-sphere C. Symplectically blow down MG along C, noting that
C is disjoint from the (−2)-spheres Fk as C · Fk = 0, we obtain 8 disjointly embedded

symplectic (−2)-spheres in CP2#8CP2, contradicting Theorem 1.4. Case (b) is similarly
eliminated. Consequently, the homology classes of F1, F2, · · · , F8 are given by case (c) of
Lemma 5.1.

Our next step is to show that there is an embedded symplectic sphere with self-
intersection zero, denoted by F , which lies in the complement of F1, F2, · · · , F8 and
intersects transversely and positively with Bi. This can be seen as follows. It is easy
to check that in case (c) of Lemma 5.1, the class El1 has the largest area. By Lemma
3.2, we can choose ω-compatible almost complex structures J so that Bi and Fk are all
J-holomorphic, and successively represent the classes Els , s ≥ 2, beginning with the one
of the smallest area, by a J-holomorphic (−1)-sphere. By successively symplectically

blowing down the classes Els , s ≥ 2, we reach CP2#CP2, with El1 being the (−1)-class
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(see [8], Section 4, for a discussion on the general procedure). Note that the (−2)-spheres
F1, F2, F3, F4 descend to 4 disjointly embedded symplectic spheres of self-intersection
zero (they all have class H −El1); in fact there is a symplectic S2-fibration of CP2#CP2

containing them as fibers. With this understood, we can take a fiber F in the comple-
ment which intersects transversely and positively with the descendant of Bi in CP2#CP2.
We then symplectically blow up CP2#CP2 successively, reversing the symplectic blowing
down procedure, in order to go back to MG. In this way, we recover the 8 symplectic
(−2)-spheres F1, F2, · · · , F8 and the tori Bi, although the symplectic structure on MG

may be different since we don’t keep track of the sizes of the symplectic blowing up.
Now we symplectically blow down F1, F2, · · · , F8, which results in a symplectic 4-

orbifold X with 8 isolated singular points, all of isotropy of order 2. In the complement of
the singularities, there lies the embedded symplectic sphere F with F 2 = 0, and the tori
Bi. By [22], we can assume that F and Bi intersect symplectically orthogonally without
loss of generality.

With the preceding understood, we consider the set J of ω-compatible almost complex
structures on X which satisfy the following conditions: fix a sufficiently small regular
neighborhood V of ∪iBi, not containing any singular points of X, and fix an integrable
ω-compatible almost complex structure J0 on V , then for each J ∈ J , J = J0 on V and
F is J-holomorphic. With this understood, note that for any J ∈ J , the deformation
of the J-holomorphic sphere F is unobstructed (cf. [24]). We denote by MJ the moduli
space of J-holomorphic spheres having the homology class of F . Then MJ 6= ∅ and is a
smooth 2-dimensional manifold. In the present situation,MJ is not compact, but can be
compactified using the orbifold version of Gromov compactness theorem (cf. [6, 11]). The
key issue here is to understand the compactification MJ of MJ , at least for a generic
J ∈ J .

Lemma 5.3. Let {Sn} be a sequence inMJ which converges to a Gromov limit
∑
imiCi ∈

MJ \MJ . Then for a generic J ∈ J , {Ci} consists of a single component of multiplicity
2, which is an embedded orbifold sphere containing exactly 2 singular points of X.

Proof. Since J is generic, there is no J-holomorphic (−α)-sphere lying in the complement
of the singular points of X for any α > 1. Moreover, just as in the smooth case, {Sn}
can not split off a J-holomorphic (−1)-sphere lying entirely in the smooth locus of X. It
follows easily that in the Gromov limit

∑
imiCi ∈ MJ \MJ , each component Ci must

contain a singular point of X.
With this understood, we take an arbitrary component Ci. Suppose Ci contains k > 0

singular points of X. Then we can pick an orbifold Riemann sphere Σ with k orbifold
points of order 2, which are denoted by z1, z2, · · · , zk, and find a J-holomorphic map
f : Σ → X parametrizing Ci. Recall that such a map f near an orbifold point zj ,

assuming of order mj , is given by a pair (f̂j , ρj), where f̂j : D → C2 is a local lifting of
f near zj to the uniformizing system at f(zj) ∈ X, and ρj : Zmj → Gf(zj) is an injective

homomorphism to the isotropy group Gf(zj) at f(zj) ∈ X, with respect to which f̂j is
equivariant. With this understood, we let g ∈ Zmj be the generator acting on D by a
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rotation of angle 2π/mj , and let (mj,1,mj,2), 0 ≤ mj,1,mj,2 < mj , be the weights of the
action of ρj(g) ∈ Gf(zj) on C2. Then the dimension of the moduli space of J-holomorphic
curves containing Ci equals 2d, where d ∈ Z and is given by

d = c1(TX) · Ci + 2−
k∑
j=1

mj,1 +mj,2

mj
− (3− k).

See [11, 6]. Note that in the present situation, mj = 2 and mj,1 = mj2 = 1 for each j. It
follows easily that d = c1(TX) ·Ci − 1; in particular, c1(TX) ·Ci ∈ Z. Moreover, since J
is generic, we have d ≥ 0, which implies that c1(TX) · Ci ≥ 1.

As an immediate corollary, we note that {Ci} either consists of two components, each
with multiplicity 1, or a single component with multiplicity 2, and moreover, c1(TX)·Ci =
1 for each i. This is because c1(TX) · F = 2, and F =

∑
imiCi. We can further rule out

the possibility of two components as follows. Suppose there are two components C1, C2

in {Ci}. Then C2
1 + 2C1 ·C2 +C2

2 = F 2 = 0 implies that one of C2
1 , C

2
2 must be negative.

Without loss of generality, assume C2
1 < 0. Then C2

2 ≥ 0 because b−2 (X) = 1. With this
understood, we note that C1 ·C2 ≥ 1

2 by the orbifold intersection formula in [5] (see also

[6]). This implies C2
1 ≤ −1. Now we apply the orbifold adjunction inequality (cf. [5, 6])

to C1, which gives

C2
1 − c1(TX) · C1 + 2 ≥ k(1− 1

2
).

With C2
1 ≤ −1 and c1(TX) ·C1 = 1, it follows that k = 0, which is a contradiction. Hence

the claim that there is only one component in {Ci}.
Let C denote the single component which has multiplicity 2, and let f : Σ → X be a

J-holomorphic parametrization of C. Then we note that C2 = 0 and c1(TX) · C = 1.
Applying the orbifold adjunction formula to C (cf. [5, 6]), we get

C2 − c1(TX) · C + 2 = k(1− 1

2
) +

∑
k[z,z′] +

∑
kz,

where k[z,z′], kz ∈ Q are nonnegative and have the following significance. For any z, z′ ∈ Σ,
where z 6= z′, such that f(z) = f(z′), the number k[z,z′] > 0. Moreover, if f(z) = f(z′) is
a smooth point of X, then k[z,z′] ∈ Z. Likewise, for any z ∈ Σ, if f is not a local orbifold
embedding near z, then kz > 0. Moreover, if f(z) is a smooth point of X, then kz ∈ Z.
With this understood, it follows easily that k ≤ 2, and if k = 2, then all k[z,z′], kz = 0,
which means that C is an embedded 2-dimensional suborbifold. To rule out the possibility
that k = 1, we first observe that in this case, k[z,z′] ∈ Z. This is because as k = 1, we
can not have a pair of points z, z′ ∈ Σ, where z 6= z′, such that f(z) = f(z′) is a singular
point of X. It follows easily that all k[z,z′] must be zero, and kz = 1

2 at the unique
singular point f(z) on C. The number kz is the local self-intersection number of C at
the singular point, and kz = 1

2 means that in the uniformizing system near the singular
point, C is given by a J-holomorphic (singular) disc with a local self-intersection 1 at the
origin. It follows that the singularity at the origin must be a cusp singularity and the
J-holomorphic disc is parametrized by a pair of functions z1 = t2, z2 = t3 + · · · , where
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t ∈ D. However, it is clear that such defined J-holomorphic disc is not invariant under
the Z2-action (z1, z2) 7→ (−z1,−z2), which is a contradiction. Hence k = 1 is ruled out.
This finishes the proof of the lemma. �

It follows easily that the compactified moduli spaceMJ gives rise to a J-holomorphic
S2-fibration on X, which contains 4 multiple fibers, each with multiplicity 2. We denote
by π : X → B the S2-fibration. It is easy to see that the base B is an orbifold sphere,
with 4 orbifold points of order 2. Furthermore, note that for each i, π|Bi : Bi → B is a
branched covering in the complement of the multiple fibers by Lemma 5.2.

To proceed further, we note that c1(KX) = − 1
2

∑
iBi, so that (

∑
iBi) · F = 4. Let

z1, z2, z3, z4 be the orbifold points of B, and let w1, · · · , wk ∈ B be the points parametriz-
ing those regular fibers which do not intersect transversely with ∪iBi. We denote by xl
the number of intersection points of ∪iBi with the multiple fiber at zl, l = 1, 2, 3, 4, and
denote by yj the number of intersection points of ∪iBi with the regular fiber at wj , where
j = 1, 2, · · · , k. Then note that xl ≤ 2 and yj < 4 for each l, j. On the other hand, we
observe the following relation in Euler numbers:∑

i

χ(Bi)−
k∑
j=1

yj −
4∑
l=1

xl = 4(χ(|B|)− k − 4),

where |B| = S2 is the underlying space of B. With xl ≤ 2 and yj < 4, it follows easily
that k must be zero, and xl = 2 for each l. This means that ∪iBi intersects each regular
fiber transversely at 4 points and intersects each multiple fiber at 2 points.

Finally, we observe that X = |M/G|, i.e., X is the symplectic 4-orbifold obtained by de-
singularizing M/G along the 2-dimensional singular components. With this understood,
it is easy to see that under the projection M → X = |M/G|, the pre-image of each regular
fiber in the S2-fibration on X is a symplectic T 2 in M , giving rise to a T 2-fibration over B
on M (here we use the fact that ∪iBi intersects each regular fiber transversely at 4 points
and the projection M → X is a double cover branched over ∪iBi). Moreover, the pre-
image of each multiple S2-fiber is a multiple T 2-fiber of multiplicity 2 in the T 2-fibration
on M . It is known that such a 4-manifold M is diffeomorphic to a hyperelliptic surface
or a secondary Kodaira surface, see [17]. Since b1(M) 6= 1, M must be diffeomorphic to
a hyperelliptic surface. This finishes the proof of Theorem 1.1.

Proof of Theorems 1.2 and 1.3:

Suppose G is of prime order p. The case where MG has torsion canonical class is
contained in Lemmas 2.1 and 2.8(2), and the case where MG is irrational ruled is in
Lemmas 2.2 and 2.6(i), with p = 2 or 3 from the proof of Theorem 1.1.

Suppose MG is rational. Then by Lemmas 2.3, 2.4, 2.6 and 2.8, the order p = 2, 3 or
5. Concerning the fixed-point set structure, the case of G = Z2 follows readily from the
proof of Theorem 1.1. For G = Z3, the fixed-point set structure for the isolated points
is determined in Lemmas 2.4 and 2.9. Regarding the 2-dimensional fixed components,
we explore the embedding D → MG. In order to determine MG in each case, we use
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the formula in Proposition 3.2 of [7] to determine c1(KMG
), based on the singular set

structure of the quotient orbifold M/G, then we compute c1(KMG
)2. This allows us to

determine the diffeomorphism type of MG as MG is a rational 4-manifold. In the case of
b1(M) = 2, it is easy to see that MG = CP2#10CP2. If the set of 2-dimensional fixed
components is nonempty, Proposition 4.3 implies that it must consist of a single torus.
In the case of b1(M) = 4, MG = CP2#12CP2, and Proposition 4.4 implies that there are
no 2-dimensional fixed components. For G = Z5 where b1(M) = 4, the fixed-point set
structure for the isolated points is determined in Lemma 2.10. The possible 2-dimensional
fixed components are excluded by Proposition 4.5.

For the case where G is of non-prime order, the order of G and the fixed-point set
structure are determined in Lemmas 2.11 and 2.12. This completes the discussion on
Theorems 1.2 and 1.3.
Proof of Theorem 1.4:

First, consider the case of N = 8. We begin by showing that one can choose a sym-
plectic structure on X such that the area constraints in Lemma 5.1 are fulfilled. To see
this, by Lemma 4.1 we can choose symplectic structures ω on X such that one of the 8
symplectic (−2)-spheres has area δ1 and the remaining 7 symplectic (−2)-spheres have
area δ2, where δ2 < δ1 < 2δ2, and δ1, δ2 can be arbitrarily small. It remains to show
that one can arrange so that 7δi < −c1(KX) · [ω], i = 1, 2, hold true. For this, we

recall the fact that for X = CP2#NCP2, where N ≤ 8, −c1(KX) can be represented
by pseudo-holomorphic curves, and moreover, one can require the pseudo-holomorphic
curves to pass through any given point in X, see Taubes [42]. We pick a point x0 ∈ X
in the complement of the 8 symplectic (−2)-spheres and require the pseudo-holomorphic
curves representing −c1(KX) to pass through x0. Then it is easy to see that no matter
how small we choose the areas δ1, δ2, −c1(KX) · [ω] > δ0 for some δ0 independent of the
choice of δ1, δ2. It follows that we can arrange so that 7δi < −c1(KX) · [ω], i = 1, 2, hold
true.

With the preceding understood, by the same argument as in Lemma 5.1, we can show
that the homology classes of the 8 symplectic (−2)-spheres must be given as in case (a)
of Lemma 5.1. Then by Lemma 3.2, we can successively symplectically blow down the
Eis classes for s ≥ 2 and reach to the 4-manifold CP2#CP2, with Ei1 being the (−1)-
class, such that the 7 symplectic (−2)-spheres F2, F3, · · · , F8 descend to a configuration
of symplectic spheres of the class H, which intersect transversely and positively according
to the incidence relation of the Fano plane; that is, the 7 spheres intersect in 7 points,
where each point is contained in 3 spheres. By a theorem of Ruberman and Starkston
(cf. [38]), such a configuration cannot exist in CP2. Thus to derive a contradiction, we
need to represent the class Ei1 by a symplectic (−1)-sphere in the complement of the 7

symplectic spheres, to further blow down CP2#CP2.
To this end, we note that the configuration of 7 symplectic spheres in CP2#CP2 is

J-holomorphic with respect to some compatible almost complex structure J . On the
other hand, the class Ei1 is represented by a finite set of J-holomorphic curves

∑
imiCi

by Taubes’ theorem (cf. [29]). Now the key observation is that if there are more than one
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components in {Ci}, then one of them must have a negative a-coefficient in the reduced
basis H,Ei1 . But such a component intersects negatively with any of the 7 J-holomorphic
spheres in the configuration (which has class H). This is a contradiction, hence Ei1 must
be represented by a single J-holomorphic curve, which is a (−1)-sphere and lies in the
complement of the configuration of 7 symplectic spheres. This finishes the proof for the
case of N = 8.

The argument for the case of N = 7 is similar. For N = 9, it is easy to see from
Lemma 5.1 that the homology class for the 9-th symplectic (−2)-sphere does not exist.
This completes the proof of Theorem 1.4.
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