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Knot concordances in S1 × S2 and exotic smooth

4-manifolds
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Abstract. It is known that there is a unique concordance class in the free homotopy
class of S1

× pt ⊂ S1
× S2. The constructive proof of this fact is given by the second

author. It turns out that all the concordances in this construction are invertible. The
knots K ⊂ S1

× S2 with hyperbolic complements and trivial symmetry group are of
special interest here, because they can be used to generate absolutely exotic compact
4-manifolds by the recipe given by Akbulut and Ruberman. Here we built absolutely
exotic 4-manifold pairs by this construction, and show that this construction keeps
the Stein property of the 4-manifolds we start out with. By using this we establish the
existence of an absolutely exotic contractible Stein manifold pair, and an absolutely
exotic homotopy S1

×B3 Stein manifold pair.

1. Introduction

Here we will prove the following theorems which strengthens [3]:

Theorem 1. There is a pair of compact contractible Stein 4-manifolds W1, W2, which
are homeomorphic but not diffeomorphic to each other.

As in the examples of [3], W1 and W2 are related to each other by cork twisting along
a cork (W, f) ⊂ Wi, i = 1, 2 (e.g. [1]). It follows from the construction that W1 and W2

can not be corks.

Theorem 2. There is a pair of compact Stein 4-manifolds Q1, Q2 homotopy equivalent
to S1 ×B3, which are homeomorphic but not diffeomorphic to each other.

Similarly, Q1 and Q2 are related to each other by “anticork” twisting (e.g. [1]) along an
anticork contained in (W, f). The important feature of our theorems is that the manifolds
constructed are all Stein. This property enables us to imbed them into closed symplectic
manifolds and relate their exoticity to the non-vanishing gauge theory invariants of closed
symplectic manifolds ([13]). The proofs of these theorems will be using:

Theorem 3. Any knot K in S1 × S2, which is freely homotopic to S1 × pt, is invertibly
concordant to S1 × pt.
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2. Background

Let us recall some basic definitions about knot concordances:

Definition 1. Two oriented knots K1 and K2 are said to be concordant if there is a
smooth proper embedding of an annulus F : S1× [0, 1] →֒ Y × [0, 1], such that its boundary
is ∂F (S1 × [0, 1]) = K1 × 0 ⊔ (−K2) × 1, where −K2 is the knot K2 with the reversed
orientation.

Definition 2. [12] A concordance F between knots K1 and K2 is said to be invertible
if there is a concordance F ′ from K2 to K1 such that F ∪ F ′ : S1 × [0, 1] →֒ Y × [0, 1]
is the product concordance K1 × [0, 1] ⊂ Y × [0, 1]. In this case, we say K1 is invertibly
concordant to K2, and K2 splits K1 × [0, 1]. In particular when Y = S3 and K1 is the
unknot then K2 is called doubly slice.

Definition 3. An invertible cobordism X from M to N is a smooth manifold with
∂X = M ⊔ −N , such that there is a cobordism X ′ with ∂X ′ = N ⊔ −M and X ∪

N
X ′ is

diffeomorphic to M × I.

Proposition 4. The knot K ⊂ S1 × S2 given in the Figure 1 is hyperbolic with trivial
symmetry group.

K

S1
× pt

Figure 1. The knot K ⊂ S1×S2 has hyperbolic complement and trivial
symmetry group

Proposition 4 was proved by computations using SnapPy [4], and verifications of these
computations are due to [5] and [8].
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By using Theorem 3 and Proposition 4 we will convert relatively exotic smooth struc-
tures on compact 4-manifolds to absolutely exotic smooth structures, by using the con-
struction given in [3]. Our goal is to generate Stein exotic examples that can not be
obtained from [3]. Now recall the construction of absolutely exotic smooth structures on
compact 4-manifolds, from relatively exotic structures:

Theorem 5 ([3]). Let F : W → W be self homeomorphism of a compact smooth 4-
manifold, whose restriction to ∂W is a diffeomorphism which does not extend to a self
diffeomorphism of W . Then W contains a pair of homeomorphic smooth 4-manifolds V
and V ′ homotopy equivalent to W , but V and V ′ are not diffeomorphic to each other.

The construction of [3] relies on finding a knot in S3 which is doubly slice, hyperbolic,
and with no symmetry. Here we will remind the original construction, and show that we
can use invertible knot concordances in S1 ×S2 between a knot K and S1 × pt, where K
is a hyperbolic knot with trivial symmetry group, splitting the concordance.

Lemma 6. Let K be a knot in S1×S2, which is freely homotopic to S1×pt with exterior
X, then H∗(X ;Z) = H∗(S

1 ×D2;Z).

Proof. Follows from Mayer-Vietoris sequence. �

Corollary 7. Let K1, K2 be knots in the free homotopy class of the S1 × pt in S1 × S2,
and C be a concordance between K1 and K2. Then:

H∗(S
1 × S2 × I − ν(C);Z) = H∗(S

1 ×D2 × I;Z)

.Note that a tubular neighbourhood ν(C) of C in S1×S2×I is an embedding of S1×D2×I
in S1 × S2 × I, where the image of S1 × 0× I is C. The image of pt× ∂D2 × t is called
a meridian of C, which bounds a disk in the tubular neighbourhood of C, and it is
homologous to zero in the exterior. Similarly we call the image of S1 × pt × t as a
longitude.

The following lemma is adapted from [3]. We restate it here in a slightly different way
to show that we can use appropriate concordances of knots in S1 × S2 instead of in S3.
The only difference here is that the gluing map φ identifies meridian to meridian not to
longitude.

Lemma 8. Suppose that γ is a framed knot in a closed 3-manifold M , and C is an
invertible concordance from the S1 × pt to the knot K in S1 × S2 × I. Define

H =
(

M × I −
(

γ ×D2 × I
))

⋃

φ

(

S1 × S2 × I −
(

C ×D2
))

where φ : T 2 × I → T 2 × I is a diffeomorphism which sends the meridian of K to the
meridian of the knot γ. Then H is an invertible homology cobordism from M to a 3-
manifold N . If π1(S

1 × S2 × I −C ×D2) ∼= Z, then the inclusion ι : M →֒ H induces an
isomorphism on fundamental groups.

43



AKBULUT and YILDIZ

3. Proof of Theorem 3

Proof of Theorem 3. Start with a knot K ⊂ S1 × S2 in the concordance class of S1 × pt.
Built a concordance F between K and S1 × pt as it is explained in [15, Theorem 2]. F is
properly embedded in S1 × S2 × I, the last coordinate is the time, and we have S1 × S2

at every level. From the construction we see the knot K at the top level, and we perform
genus zero cobordism, i.e. we attach bunch of bands {bi}

m
i=1

, turning K to S1 × pt union
disjoint unknots {ui}

m
i=1

linking S1×pt. For 1 > t2 > t1 > 0, following levels are depicted
partially in Figure 2

• F ∩ (S1 × S2 × 1) = K
• F ∩ (S1 × S2 × t2) = K ∪ b1
• F ∩ (S1 × S2 × t1) = u1 ⊔ (S1 × pt)
• F ∩ (S1 × S2 × 0) = S1 × pt

S1
× pt

t = t2 t = t1

K

Figure 2. The construction of the concordance

where each ui = ∂D2 is an unknot in S1×S2 which is the boundary of the corresponding
0-handle of F , and bi represents a band which is a 1-handle attached to the surface. F ′

in the Definition 2 is −F here.

Next will be to construct a handlebody decomposition for the concordance complement
S1 × S2 × I − ν(F ∪ (−F )) from the handlebody decomposition of the surface F . For
a detailed discussion of handlebody decomposition of surface complement in 4-manifolds
one can consult Chapter 1.4 of [1]. To construct the complement of F in S1 × S2 × I
start from the bottom. First we see complement of S1 × pt × [0, t] in S1 × S2 × [0, t]
which is S1 ×D2 × [0, t]. Then as t increase, 0-handles of the surface F appears, in the
complement which corresponds to carving properly embedding of disks from B4. So we
have connected sum of m+1 copies of S1×B3. At the last step the complement gains m
many 4-dimensional 2-handles for the 1-handles bi of the surface, as in the middle picture
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of Figure 3. Alternatively the reader should compare this to [15], where the cobordism
was constructed from top to bottom. For example, Figure 3 describes the concordance
from the Mazur knot to S1 × pt.

To double the concordance complement, we attach upside-down handles along the dual
of the 2-handles (with zero framing), and dual 3-handles as upside-down 1-handles. We
use the dual 2-handles to get rid of the self-linking of the original 2-handle, therefore
ending up with cancelling 1/2 and 2/3 handle pairs. After cancellations, the complement
becomes a product. In Figure 3, reader can verify that sliding over the dual 2-handle
(0-framed circle linking the 2-handle) will make the 2-handle trivially link the 1-handle.

0

≈

S1
× pt

S1
× pt

0

double

Figure 3. The construction of the concordance complement

All these cancellations happens away from the endpoints
S1×S2×{0}−ν(S1×{pt}) and S1×S2×{1}−ν(S1×{pt}), provided that the attaching
circles of the two handles are away from the S1 × pt. Note that anything links to S1 × pt
can be unlinked by sliding over the middle (red) 1-handle. So far we have constructed a
diffeomorphism from S1×S2×I−ν(F ∪(−F )) to S1×S2×I−ν(S1×pt×I) = S1×B2×I,
which is identity near the endpoints. Next, we prove that this diffeomorphism extends
to self diffeomorphism of S1 × S2 × I which takes the surface F ∪ −F to the product
S1 × {pt} × I.

The diffeomorphism above induces a boundary diffeomorphism on ∂(S1 × B2 × I) =
S1×S1× I ∪ (S1×B2× 0 ⊔ S1×B2× 1). When we restrict this to the partial boundary
we get a diffeomorphism τ : T 2 × I → T 2 × I which is identity near T 2 × {0, 1}. By
Lemma 3.5 of Waldhausen [14], τ is isotopic to the identity map rel boundary hence it
extends to tubular neighbourhoods of the surfaces. Hence we have a self diffeomorphism
of S1 × S2 × I taking ν(S1 × pt × I) to ν(F ∪ (−F )). So diffeomorphic complements
uniquely determine the surfaces. �
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Theorem 3 is related to light bulb theorems, that is after doubling the concordance,
we have a surface in S1 × S2 × I which is bounded by S1 × pt× i (i = 0, 1). By capping
off both boundaries with D2 × S2 s, we get a surface in S2 × S2 intersecting pt× S2 at
one point, then apply [11] and [6]. The advantage of this construction is, it gives a rel
boundary diffeomorphism (S1 × S2 × I, F ∪ −F ) → (S1 × S2 × I, S1 × pt× I).

By applying the technique of Section 3 to the knot K ⊂ S1 × S2 of Figure 1, we get
the Figure 4, where the knot K now looks like the standard linking circle to the 1-handle
(dotted curve in the figure).

Figure 4. The concordance complement in S1 × S2 × I

In Figure 4 the concordance from S1 × pt to K is fully visible (i.e. the handles of the
complement of K are visible). Clearly cancelling the handles of Figure 4 gives Figure 1
(the dotted circle corresponds to K).
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3.1. Proof of Theorem 1

First we proceed as in [3], i.e. glue the homology product cobordism H obtained from
Figure 4 to the boundary of the cork W . From this we get a new contractible manifold
W1 containing W , such that performing the cork twisting W ⊂ W1 gives us an absolutely
exotic copy W2 of W1. Recall W1 = W ∪ H by gluing W and the homology product
cobordism H along the longitudes of η ⊂ W and K ⊂ S1 × S2, which is the Figure 5.
Here we are using the roping technique of [1] to draw the handlebody of W1. From the
discussion above, Figure 5 is equivalent to Figure 6. By zero and dot exchanges to W
inside W1 gives W2.The only remaining issue is to put Stein structure on W1 and W2

(they are homeomorphic by Freedman’s theorem).

0
0

0

0

Figure 5. W1

0 0

Figure 6. W1
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For this we will work with the picture of W1, given in Figure 6. We first put Figure 1
in Legendrian position and get Figure 7, where the 2-handle has tb = 4.

Figure 7. tb=4

f (η)
η 0

f

0 0

Figure 8

Two pictures of Figure 8 are related to each other by zero-dot exchanges. Then we put
both handlebodies of Figure 8 in Legendrian position, and connected sum with Figure 7.
This gives Figures 11 and 12, which are pictures of W1 and W2 where both are Stein. �

48



Knot concordances in S
1
× S

2 and exotic smooth 4-manifolds

η 0

Figure 9. tb(η) = −3

f (η)

0

Figure 10. tb(f(η)) = −3

0

0

Figure 11. W1, as a Stein handlebody

0

0

Figure 12. W2, an exotic copy of W1, as a Stein handlebody
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3.2. Proof of Theorem 2

As above, we will use the construction of [3] in such a way that the end result will
be a pair of Stein manifolds, homotopy equivalent to S1, which are absolutely exotic
copies of each other. Now recall the construction of [2] (and [1]): Knot R ⊂ S3 on the
left of Figure 13 bounds a ribbon D2 ⊂ B4 in two different ways. Both of these ribbon
complements C4 = B4 − N(D) are diffeomorphic to each other, where N(D) denotes
the tubular neighborhood of D. Furthermore, C4 is homotopy equivalent to S1, and the
diffeomorphism f : ∂C → ∂C is described by the involution of Figure 13 (the “zero-dot
exchange” of the two middle pictures of Figure 13) does not extend to a diffeomorphism
C → C, but extends to a homeomorphism. f is the anticork involution in 10.2 of [1].

−2 0

0

0 −2

cancelling

≈

cancelling

≈

µ f (µ)

µ
f (µ)

f

Figure 13. f : ∂C → ∂C

Next we observe that C4 is a Stein manifold by drawing the first picture of Figure 13
as in Figure 14 (this was first verified by Luke Williams). Then pick a knot µ ⊂ ∂C4 with
hyperbolic complement and trivial symmetry (again verifying by SnapPy [4]). The first
and last pictures of Figure 13 becomes Figures 14 and Figure 15.

µ

0

Figure 14. tb(µ) = −1

f (µ)

0

Figure 15. tb(f(µ)) = −3
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Finally by the roping technique of [1], we glue H to C by first identifying K and µ, then
identifying K and f(µ) getting the manifolds Q1 and Q2 in Figures 16 and 17. Clearly
both are Stein manifolds, and are homeomorphic to each other by Freedman’s theorem
(calculations π1(Qi) ∼= Z for i = 1, 2 can be checked from the pictures). �

0

0

Figure 16. Q1

0

0

Figure 17. Q2
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Remark 1. Notice each of the contractible manifolds W1 and W2 can be represented by a
single 1/2-handle pairs. To see this in Figure 12 cancel the 1-handle, at top of the picture,
with the 2-handle which goes through it geometrically once. To see this in Figure 11, we
first slide the colored 2-handle over the other 2-handle (which corresponds the handle
slide indicated by the arrow in the first picture of Figure 8) then the resulting 2-handle in
Figure 11 goes through the 1-handle once. This means that if γi are the linking circles of
the 2-handles of Wi, for i = 1, 2, there is no diffeomorphism f : ∂W1 → ∂W2 taking γ1
to γ2; if there was, we can extend it to a diffeomorphism W1 → W2 by using “carving”
(Section 2.5 of [1]). It was pointed out to us that this provides an answer to Problem 1.16
in [10], because surgering each ∂Wi along γi results S1 × S2 (since posting of our paper
this fact has also been pointed out in [9] and [7] as well).
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