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Complex G2-manifolds and
Seiberg-Witten Equations

Selman Akbulut and Üstün Yıldırım

Abstract. We introduce the notion of complex G2 manifold MC, and complexifica-
tion of a G2 manifold M ⊂ MC. As an application we show the following: If (Y, s)
is a closed oriented 3-manifold with a Spinc structure, and (Y, s) ⊂ (M,φ) is an
imbedding as an associative submanifold of some G2 manifold (such imbedding al-
ways exists), then the isotropic associative deformations of Y in the complexified G2

manifold MC is given by Seiberg-Witten equations.
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1. Introduction
An almost G2 manifold (M7, ϕ) is a 7-manifold whose tangent frame bundle reduces

to the Lie group G2. Sometimes G2 manifolds are called manifolds with G2 structure.
This structure is determined by a certain “positive” 3-form ϕ, which in turn induces a
metric g and a cross product × structure on the tangent bundle TM . An almost G2

manifold is called a G2 manifold, if the induced metric has its holonomy group contained
in G2 (e.g. [5]). There is an interesting class of submanifolds of Y 3 ⊂ (M,ϕ) called
associative submanifolds, they are the submanifolds where ϕ restricts to the volume form
of Y , equivalenty the tangent space TY is closed under the cross product operation.

By [9] every oriented 3-manifold Y embeds into some G2 manifold (M,ϕ) as an as-
sociative submanifold. In fact, any oriented 3-manifolds with a Spinc structure (Y, s)
embeds into a G2 manifold with a 2-frame field (M,ϕ,Λ) as an associative submanifold,
such that s is induced from the 2-frame field Λ [3].

In [7] McLean showed that the local deformations of the associative submanifold of a G2

manifold can be identified with the kernel of a certain Dirac operator
/DA0

: Ω0(νY ) → Ω0(νY ), which is defined on the sections of the complexified normal
bundle νY of Y . In [3] this result was extended to almost G2 manifolds, by expressing
the Dirac operator in terms of the cross product operation, and deforming its connection
term A0 → A = A0 + a, by a 1-form parameter a ∈ Ω1(Y ). This parameter makes the
Dirac operator unobstructed:

/DA0+a(v) =
∑

ej ×∇ej (v) + a(v). (1)

By coupling this with a second equation we get Seiberg-Witten equations on Y :

/DA(x) = 0
∗FA = σ(x).

(2)

The second term can be written as da = q(x) where q(x) is some quadratic function. This
relates the Seiberg-Witten equations to the local deformation equations of the associative
submanifolds, but they are not equivalent. For one thing, these equations take place in the
spinor bundle of νY (complexification of νY ) not in νY , and the misterious second equation
of (2) has no apparent relation to the deformation of the associative submanifolds. Our
motivation in writing this paper was to seek a larger manifold containing Y with more
structure, so that deformation equations of Y in that manifold would be equivalent to both
of the Seiberg-Witten equations, giving us a completely natural way to derive Seiberg-
Witten equations from associative deformations. Here we achieve this goal by defining the
notion of complex G2 manifold MC, and the notion of complexification of a G2 manifold
M ⊂MC ∼= T ∗M .

Theorem 1. Let (Y, s) be a closed oriented 3-manifold with a Spinc structure, and
(Y, s) ⊂ (M,ϕ) be an imbedding as an associative submanifold of some G2 manifold (note
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that such imbedding always exists). Then the isotropic associative deformations of (Y, s)
in the complexified G2 manifold MC is given by Seiberg-Witten equations (2).

A GC
2 manifold MC is a 14-dimensional almost complex manifold (M,J) whose tangent

frame bundle reduce to the complex Lie group GC
2 , and the complexification of a G2

manifold M ⊂ MC is just the inclusion to the cotangent bundle M ⊂ T ∗M as the zero
section. This endows MC with richer structures then M , namely a complex 3-form, a
symplectic form, and a positive definite metric {ϕC, ω, g}. Then if we start with an
associative submanifold Y ⊂M of a G2 manifold M , and complexify M ⊂MC, and then
deform Y inside of MC as an isotropic associative submanifold of MC, amazingly we get
the Seiberg-Witten type equations we are looking for (Dirac equation plus a quadratic
equation).

To keep our notations consistent, we wrote our constructions from ground up starting
with the relevant vector spaces. First we discuss G2 and GC

2 vector spaces and the various
forms on them, and study some compatible structures. Then we study various Grassmann
manifolds and their relation to each other. The Grassmannians Gφ

3 (R7) ⊂ G3(R7) are
studied in [2], and Gφ

3 (C7) along with its smooth compactification in G3(C7) is studied
in [1]. Then we discuss complexification of a G2 manifold, and in Section 6 we prove our
deformation result.

Let us remark on interesting parameter of G2 manifolds introduced in [3], which has
some relevance here: Given a G2 manifold (M,ϕ) we can always choose a non-vanishing
2-frame field Λ = {u, v} (this exists on any spin 7-manifold by [11]), then {u, v, u × v}
generates a non-vanishing 3-frame field on TM , then by using the induced metric we get
the decomposition TM = E⊕V , where V = E⊥. Furthermore any unit section ξ ∈ Γ(E)
(there are 3 independent ones) gives a complex structure on V by cross product map Jξ :
V → V . In particular, this says that the tangent bundle TM of any G2 manifold reduces
to an SU(2) bundle, as the 3-dimensional trivial bundle plus 4-dimensional HyperKahler
bundle. Also by using this Λ, the spinc structures on moving associative submanifolds
Y ⊂ M (which is used to define Seiberg-Witten equation), can be made to be induced
from the global parameter (M,Λ). We will address integrability conditions and analysis
of the quadratic term in a future paper.

2. Linear algebra
Let Vi be a vector space (over R) of dimension 2ni with almost complex structures Ji for

i = 1, 2. As usual, we can view Vi as a complex vector space by setting (a+ib)v = av+bJiv.
(Here, we are using i to denote both the index and

√
−1 but which one we mean will

always be clear in a given context.) Let
{
eji

}
be a complex basis for Vi and set f ji = Jie

j
i .
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Then, with respect to the real bases
{
eji , f

j
i

}
,

Jj =

(
0 −Inj

Inj 0

)
and the embedding Cn2×n1 → R2n2×2n1 induced from HomC(V1, V2) ⊂ HomR(V1, V2) is
given by

X + iY 7→ ι(X + iY ) =

(
X −Y
Y X

)
for X,Y ∈ Rn2×n1 . It is also easy to see that M ∈ R2n×2n is J-linear if and only if it
is in this form. In particular, we can identify A = X + iY ∈ GL(n,C) with its image
ι(A) ∈ GL(2n,R).

2.1. Symmetric bilinear forms and S1 family of metrics
By a metric g on a vector space V , we mean a non-degenerate, R-bilinear map

g : V × V → R.
Let (V,B) be a vector space over C with a symmetric (non-degenerate) bilinear form.

We define the orthogonal group O(V,B) to be the subgroup of GL(V ) that preserves B.
More precisely,

O(V,B) = {A ∈ GL(V ) | B(Au,Av) = B(u, v) for all u, v ∈ V } . (3)

One can always find an orthonormal basis {ei} for B such that B(ei, ej) = δij . Matrix
representation of an orthogonal transformation A ∈ O(V,B) satisfies the usual identity
ATA = I. Decomposing A = X + iY into real and complex parts, we get

XTX − Y TY = I
XTY + Y TX = 0.

Using these relations, it is easy to see that

ι(A)T
(

I 0
0 −I

)
ι(A) =

(
I 0
0 −I

)
.

In other words, it preserves the standard signature (n, n) metric (with respect to the
R-basis {ei, iei}). More invariantly, this metric is given by g = Re(B). Note that
Im(B) = −Re(B(iu, v)). So, fixing a complex structure on V , one can describe the
imaginary part of B in terms of its real part. In fact, this leads to an S1 family of (n, n)
metrics on V by

Re(B((cos(t)− i sin(t))x, y)) = cos(t)Re(B) + sin(t)Im(B). (4)

Indeed we are only applying an invertible linear map to the first variable of the LHS of
(4). Therefore, since at t = 0 it is a (n, n) metric, it is a (n, n) metric for all t.
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Remark 1. Note that since B is complex bilinear, its real part satisfies
g(iu, iv) = −g(u, v).

Remark 2. Also, note that the S1 family of metrics connects g to −g so any such family
has to consist of (n, n) metrics.

Next, we consider the converse.
Definition 1. Let (V, g, J) be a vector space with an inner product g, and an almost
complex structure J . We call g and J skew-compatible if g(Ju, Jv) = −g(u, v) for all
u, v ∈ V .
Remark 3. Note that a skew-compatible J is self adjoint, i.e.

g(Ju, v) = g(u, Jv). (5)
Let (V, J) be a R-vector space with an almost complex structure. We view V as a

C-vector space by setting (a+ ib)v = av + bJv for a, b ∈ R, and v ∈ V .
Proposition 1. Let g be an inner product on V which is skew-compatible with J . Then
we can define a complex symmetric bilinear form B on V by

B(u, v) = g(u, v)− ig(Ju, v).

Proof. By using (5) and the fact that g is symmetric, it is clear that B is also symmetric.
The linearity over R is also clear. So, we only need to show B(Ju, v) = iB(u, v).

B(Ju, v) = g(Ju, v)− ig(J2u, v)

= g(Ju, v) + ig(u, v)

= i (g(u, v)− ig(Ju, v))

= iB(u, v)

□
Proposition 2. Let (V, g, J) be a vector space of dimension 2n with skew-compatible g
and J . Then, g is necessarily an (n, n) metric on V .
Proof. Follows from the discussions above. □

Next, we take yet another step back. Namely, we start with a R vector space V of
dimension n with a non-degenerate metric g. We consider the complexifications VC and
gC of V and g where

VC = V ⊗ C = V ⊕ iV

gC(u+ iv, u+ iv) = g(u, u)− g(v, v) + 2ig(u, v)

for u, v ∈ V . Clearly, gC is a symmetric bilinear form on VC. Hence, again by the above
discussion, we get a S1 family of (n, n) metrics on VC. Later in subsection 2.4, we will
take this construction one step further.
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Another common construction along these lines is to complexify a vector space with an
almost complex structure (V, J). We set VC = V ⊕ iV as before and define JC(u+ iv) =
J(u) + iJ(v). Further, we set

V 1,0 = {u ∈ VC | JC(u) = iu} and
V 0,1 = {u ∈ VC | JC(u) = −iu} .

This is the usual eigenspace decomposition for JC. We have the following projection maps
ξ : VC → V 1,0 and ξ : VC → V 0,1 defined by

ξ(u) =
1

2
(u− iJC(u)) .

Note that ξ
∣∣
V

is a C-linear isomorphism (with respect to J on the domain). If we have a
symmetric C-bilinear form B on V , then we can restrict to its real part g = Re(B) and
then complexify gC. Using ξ we can compare these two symmetric bilinear forms on V
and on V 1,0.
Proposition 3. For u, v ∈ V ,

gC(ξu, ξv) =
1

2
B(u, v).

Proof. This is a straight forward computation as follows.

gC(ξu, ξv) =
1

4
gC(u− iJCu, v − iJCv)

=
1

4
(g(u, v)− g(Ju, Jv)− i (g(Ju, v) + g(u, Jv)))

=
1

4
(2g(u, v)− 2ig(Ju, v))

=
1

2
(g(u, v)− ig(Ju, v))

=
1

2
B(u, v)

since by Remark 1, g and J are skew-compatible and therefore J is also self-adjoint. □

2.2. The group GC
2

Let (O, B) be an octonion algebra over C (see [10]). We can associate a quadratic form
Q to B in the standard way: Q(u) = B(u, u). In the other direction, we have

B(u, v) =
1

2
(Q(u+ v)−Q(u)−Q(v)) . (6)

Octonions satisfy
Q(uv) = Q(u)Q(v) for u, v ∈ O. (7)

Proposition 4. For u, v, v′ ∈ O, we have Q(u)B(v, v′) = B(uv, uv′) and
B(v, v′)Q(u) = B(vu, v′u). In particular, for Q(u) = 1, left or right multiplication
by u is an orthogonal transformation of (O, B).
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Proof.

Q(u)B(v, v′) =
1

2
Q(u) [Q(v + v′)−Q(v)−Q(v′)]

=
1

2
[Q(u)Q(v + v′)−Q(u)Q(v)−Q(u)Q(v′)]

=
1

2
[Q(u(v + v′))−Q(uv)−Q(uv′)]

=
1

2
[Q(uv + uv′)−Q(uv)−Q(uv′)]

= B(uv, uv′)

The other equality can be proved similarly. □

Definition 2. We define GC
2 to be the automorphism group of O.

Proposition 5. GC
2 ≤ O(O, B)

Proof. Let A ∈ GC
2 and u, v ∈ O.

B(Au,Av) = Re(AuAv)
= Re(AuAv)
= Re(AuAv)
= Re(A(uv))
= Re(uv)
= B(u, v)

□

Remark 4. In fact, in [10], it is proved that GC
2 is connected and hence,

GC
2 ≤ SO(O, B).

Let Re(O) denote the span of 1 and Im(O) be its complement with respect to B.
Clearly, for v ∈ O, there exists a ∈ Re(O) and b ∈ Im(O) such that v = a+ b. Then, we
can define the conjugation map:

v = a− b.

Clearly, GC
2 preserves 1 and Im(O). Hence, conjugation is GC

2 equivariant. Using the
conjugation, we can express the inner product as B(u, v) = Re(uv). Also, one can show
uv = v u.

Define the cross product by u× v = Im(vu). We immediately get

u× v = vu−B(u, v).

Proposition 6. The cross product is skew-symmetric.
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Proof. First note that

u× u = Im(uu)

= −Im(uu)

= −Im(uu)

= −u× u.

Thus,

0 = (u+ v)× (u+ v)

= u× u+ u× v + v × u+ v × v

= u× v + v × u

which was to be shown. □

Let ϕ0(u, v, w) = B(u× v, w). Then,

Proposition 7. ϕ0 is an alternating 3-form on Im(O).

Proof. Multi-linearity over C is a trivial matter to check. To show that it is an alternating
form, first note that u× u = 0 implies ϕ0(u, u, v) = 0.

Next, we check ϕ0(u, v, u) = 0.

ϕ0(u, v, u) = B(u× v, u)

= B(vu−B(u, v), u)

(as u ⊥ 1) = B(vu, u)

(by Proposition 4) = B(v, 1)Q(u)

(as v ⊥ 1) = 0

Similarly, (using v = −v) we have ϕ0(u, v, v) = 0 □

Next, we would like to give an alternative description of GC
2 as the stabilizer of ϕ0 in

SL(Im(O)). Since GC
2 acts trivially on Re(O) and preserves Im(O), we identify an element

of GC
2 with a linear transformation on Im(O) and vice versa.

Proposition 8. Let G = {A ∈ SL(Im(O))|A∗ϕ0 = ϕ0}. Then G = GC
2 .

Proof. First note that for A ∈ GC
2 ,

A(u× v) = AIm(vu)

= Im(A(vu))

= Im(AvAu)

= Im(AvAu)

= (Au)× (Av).
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So,

ϕ0(Au,Av,Aw) = B(Au×Av,Aw)

= B(A(u× v), Aw)

= B(u× v, w)

= ϕ0(u, v, w).

That is, GC
2 ≤ G.

For the converse statement, we adapt Bryant’s argument in [4]. First, fix a basis (ei)
for Im(O) and set e0 = 1, then it is easy to verify that

(ι(u)ϕ0) ∧ (ι(v)ϕ0) ∧ ϕ0 = 6B(u, v)Vol (8)

holds for all u, v ∈ Im(O) where ι(u)ϕ0 is the contraction of ϕ0 with u,
Vol = e12...7 = e1 ∧ e2 ∧ · · · ∧ e7 and (ei) is the basis of O∗ dual to (ei). Thus, for
A ∈ G, we have

A∗ ((ι(u)ϕ0) ∧ (ι(v)ϕ0) ∧ ϕ0) = A∗ (6B(u, v)Vol)
ι(Au)(A∗ϕ0) ∧ ι(Av)(A∗ϕ0) ∧ (A∗ϕ0) = 6B(u, v)A∗Vol

ι(Au)ϕ0 ∧ ι(Av)ϕ0 ∧ ϕ0 = 6B(u, v)Vol
6B(Au,Av)Vol = 6B(u, v)Vol

B(Au,Av) = B(u, v).

Thus, A ∈ O(O, B). Since A preserves B and ϕ0,

B(A(u× v), w) = B(A(u× v), AA−1w)

= B(u× v,A−1w)

= ϕ0(u, v,A
−1w)

= ϕ0(Au,Av,AA
−1w)

= B(Au×Av,w)

for all w, that is, the cross product is G-equivariant. For u, v ∈ Im(O),

A(vu) = A(Re(vu) + Im(vu))

= ARe(vu) +AIm(vu)

= Re(vu) +A(u× v)

= B(v, u) +Au×Av

= B(Av,Au) + Im(AvAu)

= Re(AvAu) + Im(AvAu)

= Re(AvAu) + Im(AvAu)

= AvAu.
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Now, for α, β ∈ Re(O),
A ((α+ u)(β + v)) = A (αβ + αv + βu+ uv)

= AαAβ +AαAv +AβAu+AuAv

= A(α+ u)A(β + v).

Hence, G ≤ GC
2 and G = GC

2 . □

2.3. Alternating three-forms in seven-space
Let V be a seven-dimensional vector space over C.

Definition 3. An alternating three form ϕ ∈ Λ3V ∗ is called non-degenerate if for every
pair of linearly independent vectors (u, v) there exists w ∈ V such that

ϕ(u, v, w) 6= 0. (9)

Example 1. ϕ0 is a non-degenerate three-form on Im(O).

If ϕ is a non-degenerate three-form and u 6= 0, then ι(u)ϕ induces a symplectic form
on V/〈u〉. Hence, we can choose a symplectic basis on V/〈u〉 which we can pull back to
vi, wi ∈ V for i = 1, 2, 3. Together these vectors satisfy ϕ(u, vi, wi) = 1 for i = 1, 2, 3.
Note that
(ι(u)ϕ ∧ ι(u)ϕ ∧ ϕ) (u, v1, w1, v2, w2, v3, w3) =

(
(ι(u)ϕ)∧3

)
(v1, w1, v2, w2, v3, w3) 6= 0.

(10)
For the rest of the discussion, we fix an n-form Ω ∈ ΛnV ∗. Let x1, . . . , x7 be a basis of

V with the dual basis x1, . . . , x7 satisfying x1 ∧ · · · ∧ x7 = Ω. Define bij by

ι(xi)ϕ ∧ ι(xj)ϕ ∧ ϕ = 6bijx
1...7 (11)

where x1...7 = x1 ∧ · · · ∧ x7. We think of (bij) as a symmetric matrix. Using this matrix,
we define a symmetric bilinear form by B(u, v) = uibijv

j where u = uixi and v = vixi.

Proposition 9. The symmetric bilinear form B is well-defined and non-degenerate.

Proof. First, we consider degeneracy. Let u = uixi be an eigenvector of bij with eigenvalue
λ. Then,

ι(u)ϕ ∧ ι(u)ϕ ∧ ϕ = uiujι(xi)ϕ ∧ ι(xj)ϕ ∧ ϕ
= 6uiujbijx

1...7

= 6λ(ui)2x1...7.

By (10), we know that the left hand side does not vanish. Hence, λ is necessarily non-zero
and (bij) is non-degenerate.

Next, we show that B is well-defined. Let y1, . . . , y7 be another basis with the dual
basis y1, . . . , y7 such that y1...7 = Ω. Define cij by

ι(yi)ϕ ∧ ι(yj)ϕ ∧ ϕ = 6cijy
1...7. (12)
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Define Lj
i by yi = Lj

ixj . So, we have

Lk
i L

l
jι(xk)ϕ ∧ ι(xl)ϕ ∧ ϕ = 6cijy

1...7

= Lk
i L

l
j

(
6bklx

1...7
)

= 6cijy
1...7.

Since x1...7 = y1...7, we get
Lk
i bklL

l
j = cij . (13)

Thus, if u = uiyi = uiLk
i xk and v = viyi = viLk

i xk,

C(u, v) = uicijv
j

= uiLk
i bklL

l
jv

j

= B(u, v).

□

Note that if we scale Ω by λ, we scale B by λ−1. Furthermore, B induces a norm
on ΛnV ∗. So by scaling Ω, we may require that the norm of Ω is 1. We will implicitly
assume this for the rest of the article.

Definition 4. We call the quadruple (V, ϕ,Ω, B) satisfying (8) and N(Ω) = 1 (where N
is the quadratic form associated to B) a G2-(vector) space.

Remark 5. One can also define real G2-spaces in a similar manner. In fact, over R, ϕ
determines both a metric and a volume form uniquely. In that case the metric need not
be positive definite. The 3-form ϕ is called positive if the metric is positive definite.

2.4. The complexification of a G2-space
In this section, we exhibit the linear version of some constructions starting with a

real 7-dimensional vector space with a positive 3-form ϕ. Although it is possible to do
a similar construction with any non-degenerate 3-form, in this section and for the rest
of the article, we will focus on positive ϕ (see Remark 5). Recall that ϕ determines a
(real) G2-space (V, ϕ,Ω, g). Let VC = V ⊕ iV . Furthermore, we can extend all of the
structures complex linearly and the equation (8) continues to hold. This implies that the
complexified three-form is still non-degenerate. Therefore, we get a (complex) G2-space
(VC, ϕC,ΩC, gC).

We can also extend g as a hermitian form h. Explicitly, we define

h(x+ iy, z + iw) = g(x, z) + g(y, w) + i (g(y, z)− g(x,w)) .

Then, the real part of h is a positive definite metric and the imaginary part is a symplectic
form ω on VC.

If V is a half dimensional subspace of W with an almost complex structure J such that
V ⊕ JV =W , we could use J in place of i in the above construction. This flexibility will
be important later on.
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2.5. Compatible structures on a GC
2 -space

Kähler geometry is often said to be at the intersection of Riemannian geometry, sym-
plectic geometry and complex geometry because it comes with these three structures
that are compatible with each other. Moreover, any (compatible) two of those structures
determines the third one. At the group level, we can state this as follows

GL(n,C) ∩ O(2n) = O(2n) ∩ Sp(2n) = Sp(2n) ∩ GL(n,C) = U(n), (14)
see [8]. Our construction (see subsection 2.4) of a positive-definite metric g, a symplectic
form ω and a (complex) non-degenerate three-form ϕC from a given (real) non-degenerate
three-form ϕ allows us to talk about compatibility between these structures related to G2

geometry. In this section, we describe this relation for a complex 7-dimensional vector
space (V, J).

Definition 5. We say that the triple (g, ω, ϕC) is compatible if there is a real 7 dimensional
subspace Λ of V and a positive ϕ on Λ (determining a metric g′ on Λ) such that

(1) V = Λ⊕ JΛ =: ΛC
(2) ϕC is the complex linear extension of ϕ
(3) g + iω is the hermitian extension of g′.

In this case, we say they are induced from (Λ, ϕ, J).

Let the stabilizer of ϕ in GL(7,R) be G2 and ϕC be its complex extension to C7. Then,
A ∈ G2 is of determinant 1, commutes with i and therefore, fixes ϕC. In other words,
G2 ⊂ GC

2 .

Proposition 10.
GC

2 ∩ U(7) = G2

Proof. We have already seen that G2 ⊂ GC
2 . Since G2 ⊂ O(7,R) ⊂ U(7), G2 ⊂ GC

2 ∩U(7).
For the converse, first note that U(7)∩O(7,C) = O(7,R) since a matrix whose inverse

is both its conjugate transpose and transpose, must be a real matrix. Therefore, by
Proposition 5, GC

2 ∩ U(7) ⊂ O(7,R). So, the intersection consist of real 7 × 7 matrices
preserving ϕC. In particular, they preserve ϕ and we get

GC
2 ∩ U(7) = G2.

□
Now, using (14) and Proposition 10, it is easy to see that we have

GC
2 ∩ O(14) = GC

2 ∩ Sp(14) = G2.

We will need the following technical lemma later.

Lemma 1. Given a symplectic form ω on R14, a Lagrangian subspace Λ and a positive
3-form ϕ on Λ, let J (ω,Λ, ϕ) be the space of almost complex structures J such that the
triple (g′, ω′, ϕC) induced from (Λ, ϕ, J) satisfies
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(1) ω = ω′,
(2) g′|Λ = g, and
(3) ϕC|Λ = ϕ

where g is the metric on Λ induced from ϕ. Then, J (ω,Λ, ϕ) is contractible.

In fact, we can state this lemma in more general terms. Then, the proof will follow
from Lemma 2.

Lemma 2. Given a symplectic form ω on R14, a Lagrangian subspace Λ and a metric
g on Λ, let J (ω,Λ, g) be the space of almost complex structures compatible with ω and
g(x, y) = w(x, Jy) for x, y ∈ Λ. Then, J (ω,Λ, g) is contractible.

Remark 6. Lemma 2 says that the set of almost complex structures compatible with a
given symplectic form and a fixed metric on some Lagrangian subspace is contractible.

Proof. First, we choose an orthonormal basis {ei} for Λ and extend it to ω-standard basis
{ei, fi}. So, ω0 =

∑n
i=1 e

i ∧ f i. We think of J ∈ J (ω,Λ, g) as an 2n × 2n matrix with
respect to this basis. Note that J ∈ J (ω,Λ, g) if and only if

(1) J2 = −I2n,

(2) JTJ2nJ = J2n where J2n =

(
0 −In
In 0

)
(3) −J2nJ =

(
In B
BT C

)
is symmetric positive definite.

Let P = −J2nJ . Note that

PTJ2nP = −JTJ2nJ2nJ2nJ

= JTJ2nJ

= J2n.

This implies C = I+BBT. Define the path Pt =

(
In tB
tBT I + t2BBT

)
. Clearly, PT

t = Pt.
Next, we check if Pt is a symplectic matrix.(

In tBT

tB In + t2BBT

)(
0 −In
In 0

)(
In tB
tBT In + t2BBT

)
=

(
In tBT

tB In + t2BBT

)(
−tBT −In − t2BBT

In tB

)
=

(
0 −In
In 0

)
Therefore, Pt is invertible for all t. Since it is always symmetric and at t = 0 (or t = 1)
it is positive definite, Pt is positive definite for all t. Hence, J2nPt is a path in J (ω,Λ, g)
from J2n to J . Clearly, the path depends continuously on J . □

27



AKBULUT and YILDIRIM

Proof of Lemma 1. The first two properties imply that J (ω,Λ, ϕ) = J (ω,Λ, g) where g
is the metric induced from ϕ on Λ. Thus, Lemma 2 shows that it is contractible. The
third property is trivially satisfied by definition of complex linear extension. □

3. Grassmannians
In this section, we consider various Grassmannians related to our discussions.

3.1. Associative Grassmannian
In this section we focus on a discussion of the associative Grassmannian over C. The

reader can consult to [1] for a more comprehensive description of this variety or to [6, 2, 3]
for more details on the associative Grassmannian over R (the Cayley version is discussed
in [12]).

Using octonionic multiplication one can define an associator bracket as follows

[u, v, w] =
1

2
(u(vw)− (uv)w) . (15)

Clearly, this bracket measures whether given three octonions satisfy associativity or not.
A three-dimensional subspace of Im(O) on which the associator bracket vanishes is called
associative. The space of all associative planes is called the associative Grassmannian and
it is denoted by Gr(ϕ).

Remark 7. Our definition of associatives differs from that of [1]. In fact, we will often
require B to be non-degenerate on an associative plane L. This is the convention of [1]
and only with this convention, it is possible to find a B-orthonormal basis of L on which
ϕ evaluates to ±1. We explicitly state so whenever we require this condition.

We denote by GrC(k, n) the complex Grassmannian of k-planes in n-dimensional space
and by GrR(k, n) the real Grassmannian of k-planes in n-dimensional space. Clearly, after
choosing identifications O ∼= C8 ∼= R16, we have Gr(ϕ) ⊂ GrC(3, 7) ⊂ GrR(6, 14).

It turns out that the associator bracket is the imaginary part of a triple cross product
defined as follows

u× v × w = (uv)w − (wv)u (16)
for all u, v, w ∈ O. More precisely, Im(u× v × w) = [u, v, w] for u, v, w ∈ Im(O).

Proposition 11. For u, v, w ∈ Im(O),

[u, v, w] = u× (v × w) +B(u, v)w −B(u,w)v.

Proof. Since octonions are alternative (i.e. any subalgebra generated by two elements is
associative), we immediately see that the associator bracket is alternating. We denote
the right hand side by R(u, v, w). Clearly, R(u, v, v) = 0.
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Next, we show R(u, u, v) = 0.

u× (u× v) = Im(Im(vu)u)

= Im(Im(vu)u)

= Im((vu− Re(vu))u)
= (vu− Re(vu))u− Re((vu− Re(vu))u)
= vu2 − Re(vu)u− Re(vu2)
= Im(vu2)− Re(vu)u
= −Im(vB(u, u))−B(v, u)u since u2 = −B(u, u)

= −B(u, u)v +B(u, v)u.

Since both sides of the equality are alternating, it is enough to check the equality on
orthonormal triples. Note that both sides of the equation are GC

2 -equivariant, that is
[gu, gv, gw] = g[u, v, w] and R(gu, gv, gw) = gR(u, v, w) for g ∈ GC

2 . Furthermore, GC
2

acts transitively on GC
2 -triples, so we actually only need to consider two types of basis

vectors of the form (i, j, x) for x = k, l. This can now be easily verified by using the
definitions and octonionic multiplication table.

□

Recall that L ∈ GrF(k, n) has a neighborhood which can be identified with
HomF(L,Fn/L) which also gives us the following identification

TLGrF(k, n) ∼= HomF(L,Fn/L) ∼= L∗ ⊗ Fn/L

for F = R, or C. Let B be a non-degenerate symmetric bilinear form on Fn and L be
a subspace of Fn. With a little abuse of terminology, we say that L is non-degenerate
if B

∣∣
L×L

is non-degenerate. If L is non-degenerate, then we may identify Fn/L with
L⊥ = {v ∈ Fn | B(u, v) = 0 for all u ∈ L}. Thus, TLGrF(k, n) ∼= HomF(L,L

⊥).
Let E denote the tautological vector bundle over GrF(k, n), i.e. the fiber EL over L ∈

GrF(k, n) is L itself. Let V = E⊥. Over non-degenerate L, Fn = L⊕L⊥. Therefore, over
the open dense subset N ⊂ GrF(k, n) of non-degenerate k-planes we have the following
isomorphism

TGrF(k, n)
∣∣
N

∼= (E∗ ⊗ V)
∣∣
N
.

Next, we would like to prove the analogue of Lemma 5 in [3].

Lemma 3. Let L ∈ Gr(ϕ) be non-degenerate and L = 〈e1, e2, e3 = e1 × e2〉 be an
orthonormal basis for L. Then

TLGr(ϕ) =


3∑

j=1

ej ⊗ vj ∈ E∗ ⊗ V
∣∣∣ ∑

ej × vj = 0

 .
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Proof. The proof is virtually the same as in [3] except for the fact that we are now in the
holomorphic category. So, the paths we consider will be holomorphic maps from the unit
disk. Nevertheless, we reproduce the proof here for the sake of completeness.

We first identify C7/L with L⊥ using orthogonal projection. Let γ be a path in
HomC(L,L

⊥) ∩ Gr(ϕ) ⊂ GrC(3, 7) with γ(0) = L. Set ei(t) = ei + γ(t)ei for i = 1, 2, 3.
Since γ(t) ∈ Gr(ϕ), we have [e1(t), e2(t), e3(t)] = 0 for all t. Taking derivative of both
sides and evaluating at t = 0, we get

0 = [ė1(0), e2(0), e3(0)] + [e1(0), ė2(0), e3(0)] + [e1(0), e2(0), ė3(0)]

= [ė1(0), e2, e3] + [e1, ė2(0), e3] + [e1, e2, ė3(0)] .

Clearly, ėi(0) ∈ L⊥. Therefore, by Proposition 11, [ėi(0), ej , ek] = ėi(0) × (ej × ek).
Further, ėi(0)× (ej × ek) = ėi(0)× ei for a cyclic permutation (i, j, k) of (1, 2, 3). Thus,
we have

3∑
j=1

ej × ėj(0).

□

3.2. Isotropic Grassmannian
In this section, first we recall some basic definitions and facts of symplectic topology

(see [8]). Then, we define and investigate the Grassmannian of isotropic planes.
Let ω =

∑
i e

i ∧ f i be the standard symplectic form on R2n = Rn ⊕ iRn where {ei}
is the standard basis of Rn, fi =

√
−1ei and

{
ei, f i

}
is the dual basis of {ei, fi}. For a

subspace L, we define its symplectic complement Lω to be
Lω = {v ∈ Rn ⊕ iRn | w(u, v) = 0 for all u ∈ L} .

Definition 6. A k-plane L is called
• isotropic if L ⊂ Lω,
• coisotropic if Lω ⊂ L,
• symplectic if L ∩ Lω = {0},
• Lagrangian if L = Lω.

Next, we give a description of the set Ik of isotropic k-planes for k ≤ n. Since the
symplectic complement of an isotropic plane is coisotropic and that of a coisotropic plane
is isotropic, the set of coisotropic (n− k)-planes will be isomorphic to Ik. Clearly, the set
of all Lagrangian subspaces is In.

Given an isotropic k-plane L, we choose an orthonormal basis {zj} = {xj + iyj}
(1 ≤ j ≤ k) of L. We express these vectors in the standard basis {ei, fi} of Rn ⊕ iRn i.e.
xi = xjiej and yi = yji fj . Then, we form the following 2n× k matrix(

X
Y

)
=

(
xji
yji

)
.
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The fact that {zj} is an orthonormal basis is equivalent to

XTX + Y TY = Ik. (17)

Note that in the above basis, the matrix representation of ω is(
0 In

−In 0

)
.

Thus, the fact that L is isotropic is equivalent to

XTY = Y TX. (18)

Combining these two equations, we see that {zj} is a unitary basis (with respect to the
standard hermitian structure on Rn ⊕ iRn = Cn) of L. So, the projection map from
unitary matrices to the span of their first k-columns is a surjective map onto Ik. This
also shows that U(n) acts transitively on all isotropic k-planes. We set the “standard”
isotropic plane L0 to be the span of {e1, . . . , ek}. Then, it is easy to see that its stabilizer
consists of matrices of the form (

A 0
0 B

)
∈ U(n)

for A ∈ O(k) and B ∈ U(n− k). Hence,

Ik = U(n)
/
(O(k)× U(n− k)). (19)

In particular, the set of Lagrangian subspaces is isomorphic to

In = U(n)/O(n).

Next, we prove the analogue of Lemma 3 for Ik ⊂ GrR(k, 2n). Before we state the
lemma, recall that any orthonormal basis of an isotropic subspace L can be extended to
a orthonormal ω-standard basis for R2n, see [8]. Set E to be the tautological bundle over
GrR(k, 2n) and V = E⊥.

Lemma 4. Let L ∈ Ik and L = 〈e1, . . . , ek〉 be an orthonormal basis for L. Extend this
basis to an orthonormal ω-standard basis {ei, fi}. Then

TLIk =


k∑

j=1

ej ⊗ vj ∈ E∗ ⊗ V
∣∣∣ ω(ei, vj) = ω(ej , vi)

 .

Proof. Let φt : L → L⊥ be a path of isotropic planes, i.e. φ(0) = 0 and ω|Lt
≡ 0 for all

t where Lt = 〈ei(t)〉ki=1 and ei(t) = ei + φt(ei) for 1 ≤ i ≤ k. Set ėi = d
dt |t=0ei(t). Since

ω(ei(t), ej(t)) = 0 for all t after taking derivatives and plugging t = 0, we get

ω(ėi, ej) + ω(ei, ėj) = 0.

□
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3.3. Isotropic associative Grassmannian
In this section, we define a new type of Grassmannian called the isotropic associative

Grassmannian. The planes in this Grassmannian sit in a specific intersection of two
different geometries, namely G2-geometry and symplectic geometry. Arbitrary choices
of a symplectic form and (complex) non-degenerate three-form (on C7) may result in
different intersections of (real) associative and isotropic planes. However, the construction
of subsection 2.4 determines a particular way to intersect the two geometries.

First, we fix a particular octonion algebra O as in [12]. Then, (Im(O), ϕC,ΩC, B) is
actually the complexification of a real G2 space (R7, ϕ,Ω, g) with a positive definite inner
product and the standard symplectic structure ω is compatible with ϕC.

Definition 7. Let L be a (real) 3-dimensional subspace of Im(O) = C7. We call L
isotropic associative if

(1) ω
∣∣
L
≡ 0, and

(2) [u, v, w]C = 0 for u, v, w ∈ L.
We denote the space of all isotropic associative planes by Iφ3 ⊂ GrR(3, 14).

The following lemma describing the tangent space of Iφ3 in GrR(3, 14) at a (real) asso-
ciative plane can be proved by a combination of Lemma 3 and Lemma 4.

Lemma 5. Let L = 〈e1, e2, e3〉 be an associative plane in R7. Then its natural embedding
in C7 = Im(O) is an isotropic associative. Denote the (real) tautological bundle over
GrR(3, 14) by E. Also, set V = E⊥B. Then E⊥g = JE⊕ V and

TLI
φ
3 =

{
3∑

i=1

ei ⊗ (fi + vi) ∈ E∗ ⊗R (JE⊕ V) (20)

|
∑

ei × vi = 0 and ω(ei, fj) = ω(ej , fi)
}

3.4. B-Real associative Grassmannian
It is possible to define a different notion of a “real” part of complex associative planes.

We call them B-real associative planes.

Definition 8. Let L be a (real) 3-dimensional subspace of Im(O). Set g = Re(B) and
w = −Im(B). We call L B-real associative if

(1) g
∣∣
L

is positive definite (in particular non-degenerate),
(2) w

∣∣
L
≡ 0, and

(3) [u, v, w]C = 0 for u, v, w ∈ L.
We denote the space of all B-real associative planes by RA ⊂ GrR(3, 14).

Remark 8. In Definition 8, (1) is a technical condition which simplifies the statements
and discussions later on.
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Remark 9. If L is a real associative plane, g(u, v) = B(u, v) for u, v ∈ L. Hence, a g
orthonormal frame is also a B orthonormal frame. Therefore, the natural complexification
LC = L⊕ JL of L is in Gr(ϕC). Under this map, we obtain the following disk bundle

D3 → RA→ Gr(ϕC).

Next, we determine the tangent space of RA.

Lemma 6. Let L = 〈e1, e2, e3〉 be a B-real associative plane in Im(O). By E, we denote
the (real) tautological bundle over GrR(3, 14). Set V = E⊥B. Then E⊕E⊥g is a splitting
of the trivial R14 bundle over RA, E⊥g decomposes as JE⊕ V and

TLRA(Im(O)) =

{
3∑

i=1

ei ⊗ (fi + vi) ∈ E∗ ⊗R (JE⊕ V) |
∑

ei × vi = 0 and (fij) ∈ so(3)

}
(21)

where by fij we mean the jth component of fi with respect to the basis {Je1, Je2, Je3}.

Proof. Since g is non-degenerate on L, it is clear that EL ⊕ E⊥g
L spans R14 for L ∈ RA.

This gives a global splitting E⊕ E⊥g of the trivial R14 bundle over RA.
Furthermore, it is clear that V = E⊥B is a subbundle of E⊥g. Since B(u, v) = g(u, v)−

ig(Ju, v) and ω(u, v) = g(Ju, v) restricted to L vanishes, JE is a subbundle of E⊥g. Also,
JE ∩ V = 0. So, for dimension reasons, JE⊕ V = E⊥g.

Recall that the tangent space TLGrR(3, 14) = L∗ ⊗ L⊥g. The above discussion gives
us the refinement L⊥g = JL⊕L⊥B . So, after choosing an orthonormal frame {e1, e2, e3}
for L, we have X =

(∑3
i=1 e

i ⊗ (fi + vi)
)

∈ TLRA(Im(O)) ⊂ TLGr
R(3, 14) where{

e1, e2, e3
}

is the basis dual to {e1, e2, e3}, fi ∈ JL and vi ∈ L⊥B .
A path γ in GrR(3, 14) with γ(0) = L is (locally) given by paths fi in JL and vi in

L⊥B with fi(0) = 0 and vi(0) = 0 for i = 1, 2, 3. Set γi(t) = ei+fi(t)+vi(t). So, we have

γ(t) = 〈γi(t)〉3i=1.

Assuming γ(t) ∈ RA for all (small) t, we check the conditions imposed on γ′(0).
Positive-definiteness is an open condition and hence, it does not introduce any condition
on γ′(0).

Next, by condition 2, γ satisfies

ω(γi(t), γj(t)) = g(Jγi(t), γj(t)) = 0

for all 1 ≤ i, j ≤ 3. Applying d
dt

∣∣
t=0

to both sides, we get

0 = g(Jḟi(0) + Jv̇i(0), ej) + g(Jei, ḟj(0) + v̇j(0))

= g(Jḟi(0), ej) + g(Jei, ḟj(0))

= g(ḟi(0), Jej) + g(Jei, ḟj(0))

= g(Jej , ḟi(0)) + g(Jei, ḟj(0)).
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Since {Je1, Je2, Je3} is an orthonormal basis for L, the last equality gives us

ḟ ji (0) = −ḟ ij(0)

where ḟi(0) =
∑3

j=1 ḟ
j
i (0)Jej .

Finally, by condition 3, γ satisfies
0 = [γ1(t), γ2(t), γ3(t)] .

Applying d
dt

∣∣
t=0

to both sides, we get

0 = [ḟ1(0) + v̇1(0), e2, e3] + [e1, ḟ2(0) + v̇2(0), e3] + [e1, e2, ḟ3(0) + v̇3(0)]. (22)

Note that since L is real associative and ḟi(0) ∈ LC, we have

[ḟi(0), ej , ek] = 0

for all i, j, k. So, the equation (22) simplifies to
0 = [v̇1(0), e2, e3] + [e1, v̇2(0), e3] + [e1, e2, v̇3(0)].

The rest of the proof is as in the proof of Lemma 3 and we get

0 =

3∑
i=1

ei × v̇i(0).

□

3.5. Diagram of all Grassmannians
In this section, we give a diagram of all the relevant Grassmannians showing various

maps between them. Whenever we have a map from a real k-plane Grassmannian to
a complex k-plane Grassmannian, the complexification is well defined and we implicitly
complexify. Let F be R or C. Let us recall Gk(F

n) is the Grassmannian of k planes in Fn,
and Gφ

3 (F
7) is the associative grassmannian 3-planes in F 7, and I3(C7) is the isotropic

Grassmannian of 3-planes in C7. Then we have the following inclusions and fibrations
(the vertical maps):

G3(R14) SO(14)
SO(3)×SO(11)

Iφ3 (C7) I3(C7) U(7)
O(3)×U(4)

U(3)
O(3)

G2

SO(4) Gφ
3 (R7) Gφ

3 (C7) G3(C7) U(7)
U(3)×U(4)

G3(R7) SO(7)
SO(3)×SO(4) GC

3 (R7) SO(7,C)
SO(3,C)×SO(4,C)
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4. GC
2 -manifolds

In this section, we fix a particular octonion algebra as in subsection 3.3. Let O be a
copy of C8 generated by e0 = 1, e1, . . . , e7 forming an orthonormal basis (with respect to
the standard B) and e0, . . . , e7 be its dual basis. The non-degenerate three-form ϕ0 is
given by

ϕ0 = e123 − e145 − e167 − e246 + e257 − e347 − e356 (23)
in this basis where eijk = ei ∧ ej ∧ ek. Let u ∈ Im(O) be of norm 1. We define Ωu by

6Ωu = ι(u)ϕ0 ∧ ι(u)ϕ0 ∧ ϕ0. (24)
Surprisingly, this definition is independent of u. Indeed, for any u, v ∈ Im(O) of norm 1,
there is a linear transformation A ∈ GC

2 such that Au = v. Thus,
Ωu = A∗(Ωu)

= A∗(ι(u)ϕ0 ∧ ι(u)ϕ0 ∧ ϕ0)

= ι(Au)A∗ϕ0 ∧ ι(Au)A∗ϕ0 ∧A∗ϕ0

= ι(Au)ϕ0 ∧ ι(Au)ϕ0 ∧ ϕ0

= ι(v)ϕ0 ∧ ι(v)ϕ0 ∧ ϕ0

= Ωv.

Let Ω0 = Ωu for any N(u) = 1. Evaluating Ωu for u = e1, we see that Ω0 = e1...7.
For the rest of this section, we identify (x1, . . . , x7, y1, . . . , y7) ∈ R14 with Σxjej +

yjiej ∈ R〈e1, . . . , e7〉⊕iR〈e1, . . . , e7〉 = Im(O). This allows us to identifyGC
2 as a subgroup

of GL(14,R). Let M be a 14-manifold and m ∈ M . An R-isomorphism L : R14 → TmM
is called a frame over m and the frame bundle of M is the collection of all frames as m
varies over M .

Definition 9. A (real) 14-dimensional manifold M is called an (almost) GC
2 -manifold if

its frame bundle admits a reduction to a principal GC
2 -bundle.

Proposition 12. A GC
2 -manifold M naturally has the following structures

• an almost complex structure J ∈ Γ(M ;End(TM))
• a C-linear three-form ϕ ∈ Ω3(M ;C)
• a C-linear seven-form Ω ∈ Ω7(M ;C)
• a symmetric bilinear form B ∈ Γ(M ;S2(TM)⊗ C)
• two signature (n, n) pseudo-Riemannian metrics g1 = Re(B) and g2 = Im(B).

Proof. Since GC
2 preserves each one of these structures, one may pull them back onto M

by using a GC
2 -frame. □

Next, we reformulate the above definition. Since GC
2 is the stabilizer of ϕC in SL(Im(O))

(by Proposition 8), one may also use the following definition of (almost) GC
2 -manifolds.

Definition 10. A (real) 14 dimensional manifold (M,J, ϕ,Ω) with an almost com-
plex structure J , a C-multilinear three form ϕ and a C-multilinear seven-form Ω is
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called an (almost) GC
2 -manifold if for every m ∈ M , there is an R-linear isomorphism

(TmM,J, ϕ,Ω) ∼= (Im(O), i, ϕ0,Ω0).

Let Y be a (real) 3-dimensional submanifold of a GC
2 -manifold M . If TpY is a B-real

associative plane in TpM for every p, then Y is called a B-real associative submanifold.
In order to define isotropic associative submanifolds, one needs an (almost) symplectic
structure compatible with GC

2 structure. We say that a symplectic structure is compatible
with GC

2 structure if they are point-wise compatible in the sense of subsection 2.5. We
call a (real) 3-submanifold Y isotropic associative submanifold if TpY is an isotropic
associative plane in TpM for every p.

5. Complexification of a G2 manifold
In this section, we give two examples of GC

2 manifolds with a compatible (almost)
symplectic structure. We start with a usual G2 manifold and construct two different GC

2

manifold structures on its cotangent bundle.
Our first construction is as follows. Let (M,ϕ) be a (real) 7-dimensional G2 manifold.

Recall that M is naturally equipped with a Riemannian metric g and a volume form Ω
satisfying

ι(u)ϕ ∧ ι(v)ϕ ∧ ϕ = 6g(u, v)Ω. (25)
We can think of the Levi Civita connection on the cotangent bundle as a horizontal
distribution and hence, it induces the isomorphism

TαT
∗M ∼= TpM ⊕ T ∗

pM (26)
where α ∈ T ∗

pM and p ∈ M . To define an almost complex structure on TT ∗M , we view
the metric as a vector bundle isomorphism g : TM → T ∗M and we set

J(X + β) = −g−1(β) + g(X) (27)
for (X,β) ∈ TpM ⊕ T ∗

pM = TαT
∗M . Clearly, J2 = −ITT∗M .

Next, we “extend ϕ complex linearly” to TT ∗M , i.e. we define ϕC to be the unique
C-valued 3-form satisfying

(1) ϕC(X,Y, Z) = ϕ(X,Y, Z) and
(2) ϕC(J(X), Y, Z) = iϕ(X,Y, Z)

for horizontal vectors X,Y, Z; where we identify TpM with horizontal part of TαT ∗M
using (26). Similarly, we extend g and Ω complex linearly and we denote the complexifi-
cations by B and ΩC, respectively. Then, from (25), we immediately get

ι(ξ)ϕC ∧ ι(ε)ϕC ∧ ϕC = 6B(ξ, ε)ΩC (28)
for ξ, ε ∈ TT ∗M . Note that B is non-degenerate and ΩC is a non-vanishing complex
volume form. Therefore, by (28), ϕC is non-degenerate. We extend g as a hermitian form
h as well. So, Re(h) is a positive definite metric and ω = Im(h) is an almost symplectic
form on T ∗M . More explicitly,

ω(X + α, Y + β) = α(Y )− β(X).
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From the construction it is clear that ϕC is compatible with ω.
Note that Re(B) is a (n, n) semi-Riemannian metric on T ∗M . Since it agrees with g

on horizontal vectors, we denote it by g as well. Clearly, J and g are skew-compatible.
We also set w = −Im(B). More explicitly, w(ξ, ε) = g(Jξ, ε). w is also a (n, n) semi-
Riemannian metric.

In the above example, the symplectic form we obtained is not necessarily closed. Our
next example is a similar construction but the symplectic form we obtain at the end is
the canonical symplectic form on T ∗M . We obtain this result at the cost of losing some
control of the almost complex structure.

Again, we start with a (real) 7-dimensional G2 manifold (M,ϕ) and we think of g
as an isomorphism between TM and T ∗M . Using this isomorphism, we think of ϕ as
an element of Γ(Λ3TM). Therefore, (T ∗

pM,ϕ) is a G2-space. The vertical subspace of
TαT

∗M is canonically defined and isomorphic to T ∗
π(α)M . The vertical subbundle defines a

Lagrangian 7-plane distribution on (T ∗M,ωcan). The space of compatible almost complex
structures on (T ∗

αTM,Λ = T ∗
π(α)M,ϕ, ωcan) is contractible by Lemma 1. Therefore, one

can find a global almost complex structure J such that the complexification of (Λ, ϕ)
with respect to J gives us a compatible triple (ωcan, ϕC, g). Compatibility here means
compatibility at every point in the sense of subsection 2.5.
6. Deforming associative submanifolds in complexification

Note that an associative submanifold Y of a G2 manifold M , naturally sits as both an
isotropic associative submanifold and a B-real associative submanifold in the zero section
of T ∗M . We consider the infinitesimal deformations of Y in which Y stays isotropic
associative in subsection 6.1 and B-real associative in subsection 6.2. We obtain Seiberg-
Witten type equations from the former.
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6.1. Deformation as isotropic associative
We denote the normal bundle of Y in M (resp. T ∗M) by νRY (resp. νCY ) and set

V = νRY ⊕ JνRY . Then we have the following decomposition

νCY = JTY ⊕ V. (29)

Let σt : Y → T ∗M be a one parameter family of embeddings. Without loss of gener-
ality, we may assume that σ̇0 is a section of Γ(νCY ). Let f ∈ Γ(JTY ), v ∈ Γ(V) with
η := f + v = σ̇0. Also, let G̃ := Gr(3, TT ∗M) → T ∗M denote the Grassmann 3-plane
bundle over T ∗M . We can lift the embedding Y ↪→ T ∗M to Y ↪→ G̃ using the Gauss
map. Then, the infinitesimal deformation of Y by η induces and infinitesimal deformation
of the lift as in [3].

For a tangent space L = TxY = 〈e1, e2, e3〉, infinitesimal deformation is given by

L̇ =

3∑
i=1

ei ⊗ Lη(ei) ∈ TLG̃.

So, the conditions for Y to stay isotropic associative are given by
(1)

∑
ei × Lv(ei) = 0

(2) ω(ei,Lf (ej)) = ω(ej ,Lf (ei))

by Lemma 5.
Using the Levi-Civita connection ∇ of (T ∗M, g), we define a Dirac type operator

/DA0
: Ω0(νCY ) → Ω0(νCY )

/DA0
(v) =

∑
ei ×∇ei(v). (30)

Note that in the role of Clifford multiplication we are using the cross product operation.

0 =
∑

ei × Lv(ei)

=
∑

ei × (∇vei −∇eiv)

=
∑

ei ×∇vei −
∑

ei ×∇eiv

We set the perturbation parameter a(v) = −
∑
ei × ∇vei. So, we the last equation

becomes
/DA(v) = /DA0

(v) + a(v) = 0 (31)
where A = A0 + a.

For the isotropy condition, we choose a standard coordinate chart (qi, pi) for the sym-
plectic form so that ω =

∑
dqi ∧ dpi where (qi) are coordinates on the base space and

(pi) are fiber directions. Write σi
t = σi

t(x
1, x2, x3) = qi(σt(x

1, x2, x3)) for 1 ≤ i ≤ 7

and σj
t = σj

t (x
1, x2, x3) = pj(σt(x

1, x2, x3)) for 8 ≤ j ≤ 14 where (x1, x2, x3) are lo-
cal coordinates on Y . Note that (possibly after reparametrization) we may assume that
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(σ1
t , σ

2
t , σ

3
t ) = (x1, x2, x3). Furthermore, since the image of σ0 lies in the 0-section of

T ∗M , we may also assume σj
0 = 0 for 8 ≤ j ≤ 14.

During the deformation Y stays isotropic if σ∗
t ω = 0. Since

σt∗
∂

∂xi
=

7∑
j=1

∂σj
t

∂xi
∂

∂qj
+
∂σj+7

t

∂xi
∂

∂pj

=

3∑
j=1

δji
∂

∂qj
+

7∑
j=4

∂σj
t

∂xi
∂

∂qj
+

7∑
j=1

∂σj+7
t

∂xi
∂

∂pj

=
∂

∂qi
+

7∑
j=4

∂σj
t

∂xi
∂

∂qj
+

7∑
j=1

∂σj+7
t

∂xi
∂

∂pj
,

we have

0 = ω(σt∗(
∂

∂xi
), σt∗(

∂

∂xj
))

=
∂σi+7

t

∂xj
− ∂σj+7

t

∂xi
+

7∑
k=4

∂σk
t

∂xi
∂σk+7

t

∂xj
− ∂σk

t

∂xj
∂σk+7

t

∂xi
. (32)

Note that the last equation is already of the form da = −q(ψ1 ⊗ ψ2) where a is a 1-form
on Y given by

a = σ8
t dx

1 + σ9
t dx

2 + σ10
t dx

3,

ψ1 and ψ2 are spinors living as sections of Ω1(νRY ) and Ω1(JνRY ) given by

ψ1 =

3∑
i=1

∂

∂xi
(σ4

t , . . . , σ
7
t )dx

i,

ψ2 =

3∑
j=1

∂

∂xj
(σ11

t , . . . , σ
14
t )dxj ,

and q is a bilinear map given by

q(ψ1 ⊗ ψ2) = ψ1 × ψ2

here the cross product is taken in the 1-form parts with metric identification.

6.2. Deformation as B-real associative
We proceed as in subsection 6.1. The conditions for Y to stay B-real associative are

given as in Lemma 6.
(1)

∑
ei × Lv(ei) = 0

(2) g(Jej ,Lf (ei)) + g(Jei,Lf (ej)) = 0
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The first condition is the same as before so we get the same equation
/DA(v) = /DA0

(v) + a(v) = 0. (33)
For the second condition, we identify f ∈ Γ(JTY ) with −Jf ∈ Γ(TY ). Then, we see

that
Lf (g(ei, ej)) = Lf (g)(ei, ej) + g(Lfei, ej) + g(ei,Lfej)

Lf (δij) = Lf (g)(ei, ej).

In other words, f is the image of a Killing vector field on Y .
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