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Exceptional Dehn surgeries along the Mazur link

Yuichi Yamada

Abstract. The Mazur manifold is known as the first example of a cork, that is,
a contractible 4-manifold that can change differential structures of 4-manifolds by
cut and reglue with a twisting map. The Mazur link is a two-component link that
describes the Mazur manifold. Akbulut-Yasui generalized them and constructed a
sequence of corks. We name their links Akbulut-Yasui links and make a complete
list of exceptional, i.e., non-hyperbolic integral Dehn surgeries along them. We use
Martelli-Petronio-Roukema’s theorem on exceptional Dehn surgeries along the mini-
mally twisted four chain link.

1. Introduction
The Mazur link MZ is a hyperbolic, two-component two-bridge link ([Maz]), see Fig-

ure 1. Each component is unknotted, and the linking number of the components is ±1.
By these properties, the Mazur link describes the Mazur manifold, which is contractible
but not a 4-ball. In fact, its boundary (denoted by (MZ; 0, 0) below, up to orientation) is
not homeomorphic to the 3-sphere S3 but an integral homology sphere that admits a hy-
perbolic structure. The Mazur manifold and similarly constructed manifolds have played
important roles in the theory of 4-manifolds, and have been considered, for example, in
[AKi, Ak, Mat], and more recently in [O], et al.

The Mazur manifold is now known as the Akbulut cork, where a cork is a compact
contractible 4-manifold that can change differential structures of closed 4-manifolds by cut
and reglue with a twisting map over the boundary. Corks are supposed to admit a Stein
structure (see [AY] for the definition). The twisting map of the Mazur manifold is induced
from the symmetry τ that switches the components. We define the Mazur link MZ as
C(2, 1, 4) by Conway’s notation of two-bridge links, see Figure 1 again, though the original
link (in [Maz, Mat]) was its mirror image. This is more convenient for recent study in the
theories of Stein structures, Legendre diagram descriptions, positive allowable Lefschetz
fibrations (PALF), and so on (see [AM, AY, O, U]). Akbulut-Yasui generalized the (first)
Akbulut cork and constructed a sequence of corks [AY] which we call “Akbulut-Yasui
corks”. They are also described by two-bridge links, which we name the Akbulut-Yasui
link: AYm = C(2m, 1, 2(m + 1)) with m ≥ 1 (see Figure 2). Each AYm has a symmetry
like τ . In the figures of the present paper, a boxed integer means right-handed full-twists.
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Figure 1. The Mazur link: MZ = C(2, 1, 4)
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Figure 2. The Akbulut-Yasui link AYm = C(2m, 1, 2(m+ 1)) (ex. AY2)

Let L = K1 ∪ K2 ∪ · · · ∪ Kn be an orderd n-component link in S3 and r1, r2, . . . , rn
integers or rational numbers (or ∞ = 1/0). By (L; r1, r2, . . . , rn), we denote the 3-
manifold obtained by the Dehn surgery, or the surgery itself. We say that the surgery
(L; r1, r2, . . . , rn) is hyperbolic if the resulting manifold of the surgery admits a hyperbolic
structure. In the present paper, we are interested in integral Dehn surgeries (AYm; p, q)
along the Mazur link MZ(= AY1) and Akbulut-Yasui links AYm, the distribution of
exceptional (i.e., non-hyperbolic) Dehn surgeries, especially in lens space surgeries and
reducible surgeries (surgeries whose results are connected sums of 3-manifolds). By the
symmetry τ , it holds that (AYm; q, p) = (AYm; p, q), thus we often assume that p ≤ q.

We summarize our results as follows: Roughly speaking, we will see that, among all
Akbulut-Yasui links, AY1 = MZ is very special and AY2 is a little special, from the view
point of exceptional Dehn surgery.

Theorem 1.1. There exist some sequences of exceptional (i.e., non-hyperbolic) integral
Dehn surgeries along Akbulut–Yasui link AYm with m ≥ 1. In fact,

(AYm; 2m+ 1, q), (AYm; 2m+ 2, q), (AYm; 2m+ 3, q) and (AYm; 2m, 2m+ 4)

are exceptional Dehn surgeries, for any integers q. Furthermore,
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(1) For Akbulut–Yasui links AYm with m ≥ 3, up to the symmetry
(AYm; q, p) = (AYm; p, q),

the above list is complete. The other surgeries are hyperbolic.
(2) For Akbulut–Yasui links AY2 (m = 2), in addition to the list above, one more

exceptional surgery (AY2; 4, 9) (and (AY2; 9, 4) by the symmetry) exists.
(3) For the Mazur link MZ (= AY1, m = 1), up to the symmetry

(MZ; q, p) = (MZ; p, q),

has more exceptional surgeries. The following is a complete list of exceptional
surgeries:
(MZ; 3, q), (MZ; 4, q), (MZ; 5, q), (MZ; 2, q) and (MZ; 1, 1),

for any integers q.

See graphic Figure 18 for the distribution (geography) of exceptional Dehn surgeries.
In the next section, in Theorem 2.1, 2.3, 2.4 and Corollary 2.7, we will study the resulting
manifolds of all exceptional Dehn surgeries above, and prove them by Kirby calculus, in
Section 4.

To show that many, almost all, surgeries (AYm; p, q) are hyperbolic, we use Martelli-
Petronio-Roukema’s theorem [MPR, Corollary 3.6] as a criterion (see Theorem 3.2). This
theorem motivates the author to study our classification in the present paper. Using the
software SnapPy by Culler-Dunfield-Weeks [CDW], Martelli-Petronio-Roukema observed
all exceptional Dehn surgeries with rational coefficients along the minimally twisted i-
component chain links Mi with i ≤ 5 (see [MPR, MP]). See Figure 3 for the link M4.
Note that, in the diagram, only one clasp (at − in Figure 3) is opposite from the others.
The link Mi+1 is obtained from Mi by a blow-up: M1 is the figure-eight knot, M2 is the
Whitehead link. The results in [MPR] are an extension of those along “the magic link”
M3 in [MP]. See [KiKoT] and [KiT] for the magic link M3. Yoshida proved that M4 has
the minimal volume among four-component hyperbolic links [Yo]. We use the fact

(AYm; 2m+ a, 2m+ b) = (M4; a− 1,−1/m, b− 1,−1/(m+ 1)).

In our context, Martelli-Petronio-Roukema’s Criterion (MPR Criterion) is as follows:
Let Q denote Q∪{∞ = 1/0}. For α = (α1, α2, α3, α4) ∈ Q4, they study the Dehn surgery
(M4;α) = (M4;α1, α2, α3, α4). MPR Criterion consists of two steps:

(1) They ([MPR]) defined some deformations (from α to α′) on Q4 that do not change
the resulting manifold of the surgeries ((M4;α) ∼= (M4;α

′)) up to orientation.
The most basic one is the dihedral deformations. See Definition 3.3 in the present
paper.

(2) They ([MPR]) made a list of exceptional Dehn surgeries along M4, which consists
of three families and three concrete manifolds. They claim that every (M4;α)
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Figure 3. The minimally twisted four chain link M4

is hyperbolic except the case where α can be deformed to one in the list. See
Theorem 3.2.

Recently, Hoffman-Ichihara-Kashiwagi-Masai-Oishi-Takayasu [HIKMOT] made a soft-
ware program HIKMOT, supported by Verified computations. One can say “if HIKMOT says
that the manifold is hyperbolic, then the manifold is really hyperbolic”. According to
the author’s knowledge, no counter examples of MPR Criterion (examples of hyperbolic
surgeries that HIKMOT does not determine hyperbolic) have appeared.

2. Resulting manifolds
We start with notations for Seifert manifolds and graph manifolds.

Notation. ([MPR]) We let X(b; (a1, b1), . . . , (ar, br)) denote a Seifert manifold (or a Seifert
piece) over a sphere (X = S), a disk (X = D) or an annulus (X = A). We omit b as
X((a1, b1), . . . , (ar, br)) in the case b = 0. The indices admit the following deformation:

X(b; . . . , (ai, bi), . . .) = X(b− 1; . . . , (ai, ai + bi), . . .).

Let X1, X2 be a pair of Seifert pieces with torus boundaries, and M a matrix in GL(2;Z).
By X1 ∪M X2, we denote a graph manifold obtained by pasting X1 and X2 along their
boundary tori by a homeomorphism defined by the matrix M , with respect to the basis
{a regular fiber, a section} in the first homology. Similarly, by A(b; (a1, b1))/M , we denote
a graph manifold obtained from a Seifert manifold A(b; (a1, b1)) over an annulus by pasting
their boundary tori by a homeomorphism defined by the matrix M . We often use the
matrix

H =

[
0 1
1 0

]
.

Even if the obtained manifold degenerates to a Seifert manifold, a lens space or a
connected sum of two lens spaces, we we say that the manifold is a graph manifold.

Our convention about orientations of lens spaces is “the p/q Dehn surgery along an
unknot is −L(p, q)”.

The resulting manifolds of exceptional (i.e., non-hyperbolic) Dehn surgeries along
Akbulut-Yasui links AYms with (m ≥ 1), are as follows:
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Theorem 2.1. The resulting manifolds of the exceptional integral Dehn surgeries along
Akbulut–Yasui link AYm with m ≥ 1 are as follows:
(AYm; 2m+ 1, 2m+ b) = D(2; (m, 1), (m+ 1, 1)) ∪H D(0; (2, 1), (b− 3, 1)),

(AYm; 2m+ 2, 2m+ b) = S(−1; (2m+ 3,m+ 2), (2m+ 1,m+ 1), (b− 2, 1)),

(AYm; 2m+ 3, 2m+ b) = D(−2; (m+ 1, 1), (m+ 2, 1)) ∪H D(−1; (2, 1), (b− 1, 1)),

(AYm; 2m, 2m+ 4) = L(4m2 + 8m− 1, 2m2 + 3m− 2).

See the diagrams in Figure 7. For m = 1 (i.e., the Mazur link MZ = AY1), see
Theorem 2.4.

Remark 2.2. Maruyama pointed out that (AYm; 2m + 1, 0) is a graph manifold [Mar].
Akbulut-Karakurt used this fact to calculate its Heegaard Floer homolgy [AKa].

Theorem 2.3. As a list of exceptional integral Dehn surgeries along Akbulut–Yasui link
AYm with m ≥ 2, up to the symmetry (AYm; q, p) = (AYm; p, q), the list in Theorem 2.1
is almost complete. More precisely,

(1) For m ≥ 3, the list in Theorem 2.1 is complete.
(2) For m = 2, the list in Theorem 2.1 is complete except for one more example

(AY2; 4, 9) = D(−1; (2, 1), (3, 1)) ∪H D(−1; (2, 1), (3, 1)),

(and (AY2; 9, 4) by the symmetry), see Figure 7.
All other integral Dehn surgeries are hyperbolic.

Theorem 2.4. As a list of exceptional integral Dehn surgeries along the Mazur link MZ
(= AY1) and their resulting manifolds, up to the symmetry (MZ; q, p) = (MZ; p, q), the
list below is complete:

(MZ; 3, q) = S(−1; (7, 5), (2, 1), (q − 5, 1)),

(MZ; 4, q) = S(−1; (5, 3), (3, 2), (q − 4, 1)),

(MZ; 5, q) = D(−2; (2, 1), (3, 1)) ∪H D(−1; (2, 1), (q − 3, 1)),

(MZ; 2, q) = S(−1; (2, 1), (3, 2), (2q − 13, 2)),

(MZ; 1, 1) = A((2, 3))/H .

All other integral Dehn surgeries are hyperbolic.

We will prove these theorems in Section 4 by Kirby calculus [Ki2, Ro].
Remark 2.5. Surgeries (MZ; 3, q), (MZ; 4, q), (MZ; 5, q) and (MZ; 2, 6) follow from
Theorem 2.1 by substitution m = 1. Surgeries (MZ; 2, q) with any q (except 6) and
(MZ; 1, 1) are special cases, see Figure 7 and 5(3).

Remark 2.6. Akbulut-Kirby have already shown that (MZ; 2, 0), (MZ; 3, 0) and
(MZ; 4, 0) are the Brieskorn homology spheres Σ (2, 3, 13),Σ (2, 5, 7) and Σ (3, 4, 5), re-
spectively [AKi].
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Corollary 2.7. On lens space surgeries and reducible surgeries, up to the symmetry
(AYm; q, p) = (AYm; p, q), the list below is complete:

(1) (Case m ≥ 2) Lens space and lens ♯ lens surgeries along Akbulut–Yasui link AYm

with m ≥ 2.
(AYm; 2m, 2m+ 4) = L(4m2 + 8m− 1, 2m2 + 3m− 2),
(AYm; 2m+ 1, 2m+ 2) = L(4m2 + 6m+ 1, 4m2 + 2m),
(AYm; 2m+ 2, 2m+ 3) = L(4m2 + 10m+ 5, 4m2 + 6m+ 2),

(AYm; 2m+ 1, 2m+ 3) = L(2, 1)♯L(2m2 + 4m+ 1, 2m2 + 2m),
(AYm; 2m+ 2, 2m+ 2) = L(2m+ 1, 2)♯L(2m+ 3, 2m+ 1).

(2) (Case m = 1) Lens space and lens ♯lens surgeries along the Mazur link MZ
(= AY1).

(MZ; 2, 6) = L(11, 3), (MZ; 3, 5) = L(2, 1)♯L(7, 2),
(MZ; 3, 4) = L(11, 2), (MZ; 4, 4) = L(3, 2)♯L(5, 2),
(MZ; 4, 5) = L(19, 8),
(MZ; 2, 7) = L(13, 5), (MZ; 3, 6) = L(17, 10).

Remark 2.8. Comparing cases (1) and (2) in the corollary, the lens space surgeries
(MZ; 2, 7) and (MZ; 3, 6) in (2) are special cases. The other surgeries follow from the
general case (1) by substitution m = 1.

Remark 2.9. On exceptional Dehn surgeries (MZ; 1, q), we can use the fact
(MZ; 1, q) = (C(−2, 4); q − 1), see Figure 17, [Ak2] and the results in [BW] on excep-
tional Dehn surgeries on two-bridge knots, where C(−2, 4) is the two-bridge knot in our
convention.

3. Hyperbolic cases
Using the results by Martelli-Petronio-Roukema [MPR] on exceptional Dehn surgeries

along the minimally twisted four chain link M4 as a criterion, we show that many surgeries
(AYm; p, q) are hyperbolic.

Since −1/n-surgery (n ∈ Z) along an unknot in S3 (or in any 3-manifold) acts
on links in the complement as n full-twists without changing the manifold, we have
(M4; ∗,− 1

m , ∗,− 1
m+1 ) = S3 and that the union of the first and the third components (at

∗s) becomes an Akbulut-Yasui link AYm in the resulting S3, see Figure 3. Considering
framings, we have the fact

(AYm; 2m+ a, 2m+ b) = (M4; a− 1,−1/m, b− 1,−1/(m+ 1)). (1)

3.1. Martelli-Petronio-Roukema Criterion
Let Q denote Q ∪ {∞}, where ∞ = 1/0.

Definition 3.1. We let j, k, i : Q → Q denote linear fractional transformations

j(x) =
x

x− 1
, k(x) = 2− x and i(x) =

x− 2

x− 1
,
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respectively. We also define j(∞) = 1, k(∞) = ∞ and i(∞) = 1. They are involutions:
j2 = k2 = i2 = 1 (1 means the identity map) and satisfy jk = kj = i, see Figure 4. They
generate a group ⟨j, k|j2 = k2 = 1, jk = kj(= i)⟩, isomorphic to Z/2× Z/2.

2

1

0

∞

1

2

3

2

−1 3

i j

k

Figure 4. The involutions i, j and k

Next, we recall several deformations on Q4 from [MPR].
(0) Dihedral deformations generated by the following two deformations

C : (α1, α2, α3, α4) 7→ (α2, α3, α4, α1)

R : (α1, α2, α3, α4) 7→ (α1, α4, α3, α2)

It holds that C4 = R2 = 1, CR = RC−1.
(1) Deformations J,K and I

J(α1, α2, α3, α4) = (j(α1), k(α2), j(α3), k(α4))

K(α1, α2, α3, α4) = (k(α1), j(α2), k(α3), j(α4))

I(α1, α2, α3, α4) = (i(α1), i(α2), i(α3), i(α4))

Note that they are involutions J2 = K2 = I2 = 1 and JK = KJ = I, because
of the relations among i, j and k. There are some symmetries: CJ = KC,
KR = RK,CI = IC, and so on.

(2) (−1)-deformation (−1, α, β, γ) 7→ (−1, β − 1, α+ 1, γ)
(3) A rare deformation (−1,−2,−2, α) 7→ (−1,−2,−2,−α− 4)

From now on, for elements in Q4, we use “=” for the equivalence relation defined by the
dihedral deformations.
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Theorem 3.2. (MPR Criterion in Martelli-Petronio-Roukema [MPR]) Every filling on
M4 is hyperbolic, except those listed below, and those obtained from them via composition
of the maps (deformations) in Definition 3.1.

(1) (M4; ∞, a/b, c/d, e/f) = S((a, b), (d,−c), (e, f))
(2) (M4; 0, a/b, c/d, e/f)

= D(2; (b,−a), (f,−e)) ∪H D((2, 1), (c− 2d, d))

(3) (M4; −1,−2,−1, a/b) = A((b,−a))/H
(4) (M4; −1,−2,−3,−4) = D((2, 1), (2,−1)) ∪M(2) D((2, 1), (3, 1))
(5) (M4; −1,−3,−2,−3) = D((2, 1), (2,−1)) ∪M(3) D((2, 1), (3, 1))
(6) (M4; −2,−2,−2,−2) = D((2, 1), (2,−1)) ∪M(4) D((2, 1), (3, 1))

Here, the matrices H and M(n) with n = 2, 3, 4 are as follows:

H =

[
0 1
1 0

]
, M(n) =

[
−1 n
1 −(n− 1)

]
.

See Figure 5, for the resulting manifolds.

0

− /cd
/ba

/fe

− /ab

− /ef

−2 0

2

− /cd−2

0

2

− /ab

(1) (2) (3)

0

2

−2 −1n

−1

0

2

3

=

0 n

(4),(5),(6) correspond to n = 2, 3, 4 respectively

Figure 5. The resulting manifolds of Martelli-Petronio-Roukema theorem

Definition 3.3. For a given α ∈ Q, by ⟨jk⟩(α), we denote the orbit set of the group
action of α by the group ⟨j, k|j2 = k2 = 1, jk = kj(= i)⟩ in Definition 3.1.

⟨jk⟩(α) = {α, j(α), k(α), i(α)} ⊂ Q.
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Most important examples are

⟨jk⟩(∞) = {∞, 1} , ⟨jk⟩(0) = {0, 2} , ⟨jk⟩(−1) = {−1, 1/2, 3, 3/2}.

Furthermore, for α = (α1, . . . , αn) ∈ Qn (with n = 4 mainly, or n = 3), by ⟨jk⟩(α),
we also denote the union of the orbit sets of the entries:

⟨jk⟩(α) = ⟨jk⟩(α1, . . . , αn) = ⟨jk⟩(α1) ∪ · · · ∪ ⟨jk⟩(αn).

Lemma 3.4. Let α = (α, β, γ, δ) ∈ Q4. On the Dehn surgery (M4;α) = (M4;α, β, γ, δ),
we have:

(1) If ⟨jk⟩(α) ∩ {∞, 0} ̸= ∅, then (M4;α, β, γ, δ) is an exceptional surgery.
(2) If ⟨jk⟩(α) ∩ ⟨jk⟩(−1) ̸= ∅, equivalently ⟨jk⟩(α) ∋ −1, then we have a chance of

(−1)-deformation from α, J(α),K(α) or I(α).

Proof. Existence of the intersection means that one of α, J(α),K(α), I(α) contains
∞ or 0 for the case (1), −1 for (2), respectively. The lemma follows from MPR Criterion,
Theorem 3.2. □
Lemma 3.5. For general α, β, γ ∈ Q, the set of elements in Q4 obtained from (−1, α, β, γ)
by combination of (−1)- and dihedral deformations has only three elements:

{(−1, α, β, γ), (−1, β − 1, α+ 1, γ), (−1, α, γ + 1, β − 1)}

up to dihedral deformations.
Definition 3.6. We call the set (−1)-triple of (−1, α, β, γ) and write it as(−1, α, β, γ)

(−1, β − 1, α+ 1, γ)
(−1, α, γ + 1, β − 1)

.

Proof (of Lemma 3.5). The (−1)-deformation is involutive. For mixed deformations,
see the following:

(−1, α, β, γ)
R−→ (−1, γ, β, α)

(−1)−→ (−1, β − 1, γ + 1, α)
R−→ (−1, α, γ + 1, β − 1)

(−1)−→ (−1, γ, α+ 1, β − 1)
R−→ (−1, β − 1, α+ 1, γ)

(−1)−→ (−1, α, β, γ)

We find that “general α, β, γ” in the statement means that

{α, β, γ, α+ 1, β − 1, γ + 1} ̸∋ −1.

□
Lemma 3.7. For an integer n (with n ̸= 0 for (2) and (3)), we have:

(1) ⟨jk⟩(n) ∩ {∞, 0} ̸= ∅ iff n ∈ {0, 1, 2}, and ⟨jk⟩(n) ∋ −1 iff n ∈ {−1, 3}.
(2) ⟨jk⟩(1/n) ∩ {∞, 0} ̸= ∅ iff n = 1, and ⟨jk⟩(1/n) ∋ −1 iff n ∈ {−1, 2}.
(3) ⟨jk⟩((n±1)/n)∩{∞, 0} ̸= ∅ iff n ∈ {−1, 1}, and ⟨jk⟩((n±1)/n) ∋ −1 iff n = ±2,

for each sign at ±.
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Proof. (1) and (2) follow from ⟨jk⟩(n) = {n, n/(n − 1), 2 − n, (n − 2)/(n − 1)} and
⟨jk⟩(1/n) = {1/n, 1/(1− n), (2n− 1)/n, (2n− 1)/(n− 1)}, respectively. For (3), we use

⟨jk⟩((n− 1)/n) = {(n− 1)/n, 1− n, (n+ 1)/n, n+ 1} = ⟨jk⟩((n+ 1)/n) = ⟨jk⟩(n+ 1)

and (1). □

3.2. Proof of Theorem 1.1 (Case m ≥ 2)
Condition. (Case m ≥ 2) In this subsection, we study Dehn surgeries

(AYm; 2m+ a, 2m+ b)

with m ≥ 2. We assume a ≤ b. In Section 4, we will verify that, if a or b equals to 1, 2 or
3, the surgeries (AYm; 2m+ a, 2m+ b) are exceptional. Thus we assume that

{a, b} ∩ {1, 2, 3} = ∅. (2)

To prove Theorem 2.3, we have to show

Claim. The surgery (AYm; 2m+ a, 2m+ b) is hyperbolic except when (a, b) = (0, 4) and
“m = 2 and (a, b) = (0, 5)”.

For elements α ∈ Q4, we are always concerned with ⟨jk⟩(α) ∩ {∞, 0} and
⟨jk⟩(α) ∩ ⟨jk⟩(−1), to use Lemma 3.4. We take effective deformations, that is, deforma-
tions whose results contain −1 as entries, among α itself, J(α),K(α) and I(α).

We start with α = (a − 1,−1/m, b − 1,−1/(m + 1)) ∈ Q4, with a, b,m ∈ Z, since
(AYm; 2m + a, 2m + b) = (M4;α) by fact (1). We divide the proof into some cases as
Table 1.

Case Condition Conclusion (hyp. = hyperbolic)
pre {a, b} ∩ {1, 2, 3} ̸= ∅ exceptional
1 {a, b} ∩ {0, 1, 2, 3, 4} = ∅ hyp.
2 a = 0 hyp. except m = 2 or b = 4, 5

(a, b) = (0, 4) with any m exceptional
m ≥ 3, a = 0 and b ̸= 5 hyp.

2-1 (a, b) = (0, 0) hyp.
2-2 m = 2 and a = 0 hyp. except (a, b) = (0, 5)
2-3 m ≥ 3 and (a, b) = (0, 5) hyp.

3 b = 0 hyp.
4 b = 4 hyp.
5 a = 4 hyp.

Table 1. Organization of cases (m ≥ 2, a ≤ b)
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(Case 1: {a, b} ∩ {0, 4} = ∅) First, we have
⟨jk⟩(a− 1,−1/m, b− 1,−1/(m+ 1)) ∩ {∞, 0} = ∅.

Thus, there exist no deformations to one that contains ∞ or 0 among α itself, J(α),K(α)
and I(α). Second, we have

⟨jk⟩(a− 1,−1/m, b− 1,−1/(m+ 1)) ̸∋ −1.

Here, Lemma 3.7 is helpful: ⟨jk⟩(a−1)∩{∞, 0} ̸= ∅ iff a−1 ∈ {0, 1, 2}, ⟨jk⟩(1/(−m)) ∋ −1
iff −m ∈ {−1, 2}, and so on. Thus, we have no chance to use (−1)-deformation on
α, J(α),K(α) nor I(α). This means that there exist no sequences of deformations to one
that contains ∞ or 0.

It is easy to see that neither α itself, J(α),K(α) nor I(α) agree with the (3)(4)(5)(6)
in MPR list in Theorem 3.2. (In what follows, we sometimes omit this sentence.) By
MPR Criterion, the corresponding surgeries are hyperbolic.

(Case 2: a = 0) The (−1)-triple of α = (−1,−1/m, b− 1,−1/(m+ 1)) is(−1, −1/m, b− 1,−1/(m+ 1))
(−1, b− 2, (m− 1)/m,−1/(m+ 1)) = α1

(−1, −1/m,m/(m+ 1), b− 2) = α2

.

On α, we have that ⟨jk⟩(−1/m, b − 1,−1/(m + 1)) ∩ {∞, 0} = ∅ and that
⟨jk⟩(−1/m, b − 1,−1/(m + 1)) ∋ −1 iff b = 0, otherwise it does not have an effective
deformation.

On α1, we have ⟨jk⟩ (b− 2, (m− 1)/m,−1/(m+ 1)) ∩ {∞, 0} ̸= ∅ iff b = 4 (under
the condition (2) and m ≥ 2). Here we find that “(a, b) = (0, 4)” with any m ≥ 2 are
exceptional surgeries, because k(b − 2) = k(2) = 0 if b = 4, by Lemma 3.4 and MPR
Criterion. On the other hand, ⟨jk⟩ (b− 2, (m− 1)/m,−1/(m+ 1)) ∋ −1 iff m = 2 or
b = 5.

On α2, we have that ⟨jk⟩ (−1/m,m/(m+ 1), b− 2) ∩ {∞, 0} ̸= ∅ iff b = 4, and
⟨jk⟩ (−1/m,m/(m+ 1), b− 2) ∋ −1 iff b = 5. We treat (a, b) = (0, 0), “m = 2 and
a = 0” and (a, b) = (0, 5) as subcases.

(Case 2-1: (a, b) = (0, 0)) We start with the (−1)-triple of
α = (−1,−1/m,−1,−1/(m+ 1)),

which has a symmetry under the deformation R. Its (−1)-triple is, up to dihedral defor-
mations, (−1,−1/m,−1,−1/(m+ 1))

(−1,−2, (m− 1)/m,−1/(m+ 1)) = α1

(−1,−1/m,m/(m+ 1),−2)
.

For each (−1, x, y, z) above, using Lemma 3.7 (Here Lemma 3.7(2),(3) and
⟨jk⟩((m− 1)/m) = ⟨jk⟩(m + 1) are convenient), we can check ⟨jk⟩(x, y, z) ∩ {∞, 0} = ∅
and that ⟨jk⟩(x, y, z) ∋ −1 only if m = 2, at α1 = (−1, −2, 1/2,−1/3). If m ≥ 3, then
there are no deformations to one that contains ∞ or 0. These surgeries are hyperbolic.
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If m = 2, then since j(1/2) = −1, we take J(α1) = (1/2, 4,−1, 7/3). Its (−1)-triple is(−1, 4, 1/2, 7/3)
(−1, −1/2, 5, 7/3)
(−1, 4, 10/3,−1/2)

.

They have no effective deformations except going back. Thus, this surgery “m = 2 and
(a, b) = (0, 0)” is hyperbolic.

(Case 2-2: m = 2 and a = 0) We are interested in the condition on b. We start with
the (−1)-triple of α = (−1,−1/m, b− 1,−1/(m+ 1))(−1, −1/2, b− 1,−1/3)

(−1, b− 2, 1/2,−1/3) = α1

(−1, −1/2, 2/3, b− 2) = α2

.

On α2, we have ⟨jk⟩ (−1/2, 2/3, b− 2) ∋ −1 iff b = 5 (under the condition (2)),
included in the following. On α1, since {b−2, 1/2,−1/3}∩⟨jk⟩(−1) ∋ 1/2 (and 3 = b−2
if b = 5) and j(1/2) = −1, we take J(α1) = (1/2, 4− b,−1, 7/3) whose (−1)-triple is(−1, 7/3, 1/2, 4− b)

(−1, −1/2, 10/3, 4− b) = β1

(−1, 7/3, 5− b,−1/2) = β2

.

By applying Lemma 3.4 to β2, we find that the corresponding surgery “m = 2 and
(a, b) = (0, 5)” is an exceptional surgery.

From now on, we assume b ̸= 0, 1, 2, 3, 4, 5. There are no effective deformations on β1,
since ⟨jk⟩ (−1/2, 10/3, 4− b) ̸∋ −1. On β2, we have ⟨jk⟩ (7/3, 5− b,−1/2) ∋ −1 iff b = 6,
where −1 = 5− b if b = 6. It is proved that surgeries “m = 2 and a = 0” are hyperbolic
except b = 1, 2, 3, 4, 5 and 6.

Now we consider (a, b) = (0, 6). Then β2 has two (−1)s. We change the first −1
of (−1)-deformation by cyclic deformations twice: C2(β2) = (−1,−1/2,−1, 7/3). Its
(−1)-triple is (−1, −1/2,−1, 7/3)

(−1, −2, 1/2, 7/3) = γ
(−1, −1/2, 10/3,−2)

.

Only γ has an effective deformation J and J(γ) = (1/2, 4,−1,−1/3), whose (−1)-triple
is (−1, 4, 1/2,−1/3)

(−1, −1/2, 5,−1/3)
(−1, 4, 2/3,−1/2)

.

There are no effective deformations, since
⟨jk⟩(−1/2, 5,−1/3) ∩

(
{∞, 0} ∪ ⟨jk⟩(−1)

)
= ∅,

⟨jk⟩(4, 2/3,−1/2) ∩
(
{∞, 0} ∪ ⟨jk⟩(−1)

)
= ∅.

This surgery “m = 2 and (a, b) = (0, 6)” is hyperbolic.
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(Case 2-3: (a, b) = (0, 5)) We are interested in the condition on m. We assume that
m ≥ 3, since the case m = 2 is already done in Case 2-2. We start with the (−1)-triple
of α = (−1,−1/m, b− 1,−1/(m+ 1)) from Case 1.(−1, −1/m, 4,−1/(m+ 1))

(−1, 3, (m− 1)/m,−1/(m+ 1)) = α1

(−1, −1/m,m/(m+ 1), 3) = α2

.

Since {3, (m− 1)/m,−1/(m+ 1)} ∩ ⟨jk⟩(−1) = {3}, we take

J(α1) = (1/2,−1, 1−m, (2m+ 3)/(m+ 1)).

For the same reason, we take J(α2) = (1/2, (2m+1)/m,−m,−1). These (−1)-triples are(−1, 1/2, (2m+ 3)/(m+ 1), 1−m) = γ1

(−1, (m+ 2)/(m+ 1), 3/2, 1−m) = γ2

(−1, 1/2, 2−m, (m+ 2)/(m+ 1)) = γ3

,

(−1, 1/2, (2m+ 1)/m,−m) = δ1
(−1, (m+ 1)/m, 3/2,−m) = δ2
(−1, 1/2, 1−m, (m+ 1)/m) = δ3

.

For each (−1, x, y, z) above, using Lemma 3.7, we study whether ⟨jk⟩(x, y, z) ∋ −1 or
not, and if it holds, we take their effective deformations. There are only the following six
possibilities:

K(γ1) = (3,−1,−1/(m+ 1), (m− 1)/m)
I(γ2) = (3/2,−m,−1, (m+ 1)/m)
K(γ3) = (3,−1,m,m+ 2)

,
K(δ1) = (3,−1,−1/m,m/(m+ 1))
I(δ2) = (3/2, 1−m,−1, (m+ 2)/(m+ 1))
K(δ3) = (3,−1,m+ 1,m+ 1)

.

Here we ignore K(γ1), since it goes back to α1 up to dihedral deformations. (More
precisely, Kγ1 = KRCJα1 = RKCJα1 = RCJ2α1 = RCα1.) For the same reason, we
ignore K(δ1). Next, it holds that I(γ2) = δ2 and I(δ2) = γ2, which generate closed loops
of deformations. Finally, (−1)-deformations from K(γ3) and K(δ3) are(−1, 3,m+ 2,m)

(−1,m+ 1, 4,m) = ϵ
(−1, 3,m+ 1,m+ 1) = K(δ3)

,

(−1, 3,m+ 1,m+ 1)
(−1,m, 4,m+ 1) = ϵ
(−1, 3,m+ 2,m) = K(γ3)

,

respectively. If m ≥ 4, then they are all closed loops of deformations. If m = 3, then
ϵ = (−1, 3, 4, 4) = K(δ3) and K(γ3) = (−1, 3, 5, 3) have other deformations using
k(3) = −1, but they are J(ϵ) = (1/2,−1, 4/3,−2) = δ3 and

J(−1, 3, 5, 3) = (1/2,−1, 5/4,−1) = γ3,

respectively. Thus, they are also closed loops of deformations, which means that they
have no sequence of deformations to one that contains ∞ or 0. These surgeries “m ≥ 3
and (a, b) = (0, 5)” are hyperbolic.

(Case 3: b = 0) We assume a ≤ b = 0 and a ̸= 0 also, since we have already studied
(a, b) = (0, 0) in Case 2-1. We deform α = (a− 1,−1/m,−1,−1/(m+ 1)) to

(−1,−1/m, a− 1,−1/(m+ 1)),
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whose (−1)-triple is (−1, −1/m, a− 1,−1/(m+ 1))
(−1, a− 2, (m− 1)/m,−1/(m+ 1)) = α1

(−1, −1/m,m/(m+ 1), a− 2)
.

For each (−1, x, y, z) above, using Lemma 3.7, we can check ⟨jk⟩(x, y, z)∩{∞, 0} = ∅ and
that ⟨jk⟩(x, y, z) ∋ −1 only if m = 2, at α1 = (−1, a− 2, 1/2,−1/3). Since j(1/2) = −1,
we take J(α1) = (1/2, 4− a,−1, 7/3) whose (−1)-triple is(−1, 7/3, 1/2, 4− a)

(−1, −1/2, 10/3, 4− a)
(−1, 7/3, 5− a,−1/2)

.

They have no effective deformations except going back, and there are no deformations to
one that contains ∞ or 0. These surgeries are hyperbolic.

(Case 4: b = 4) We assume a ≤ b = 4, a ̸= 1, 2, 3 and a ̸= 0, since (a, b) = (0, 4) is
already studied in Case 2. We start with α = (a − 1,−1/m, 3,−1/(m + 1)). First, we
take K(α) = (3− a, 1/(m+ 1),−1, 1/(m+ 2)) and deform it to

α′ = (−1, 1/(m+ 1), 3− a, 1/(m+ 2)),

whose (−1)-triple is(−1, 1/(m+ 1), 3− a, 1/(m+ 2)) = α′

(−1, 2− a, (m+ 2)/(m+ 1), 1/(m+ 2)) = α1

(−1, 1/(m+ 1), (m+ 3)/(m+ 2), 2− a) = α2

.

For each (−1, x, y, z) above, using Lemma 3.7, we can check ⟨jk⟩(x, y, z) ∩ {∞, 0} = ∅,
but ⟨jk⟩(x, y, z) ∋ −1 holds in the following cases: (i) a = 4 at α′, (ii) a = −1 at both
α1 and α2.

First, in the case (i) (a, b) = (4, 4). Then α′ = (−1, 1/(m + 1),−1, 1/(m + 2)) has
two (−1)s. We can change the first −1 by cyclic deformations, but its (−1)-triples are
unchanged as (−1, 1/(m+ 2),−1, 1/(m+ 1))

(−1, −2, (m+ 3)/(m+ 2), 1/(m+ 1))
(−1, 1/(m+ 2), (m+ 2)/(m+ 1),−2)

.

They have no effective deformations except going back. These surgeries are hyperbolic.
Next, in the case (ii) (a, b) = (−1, 4). Then α1 = (−1, 3, (m+ 2)/(m+ 1), 1/(m+ 2))

and α2 = (−1, 1/(m+ 1), (m+ 3)/(m+ 2), 3). Since k(3) = −1, we take

J(α1) = (1/2,−1,m+ 2, (2m+ 3)/(m+ 2)),
J(α2) = (1/2, (2m+ 1)/(m+ 1),m+ 3,−1).
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Their (−1)-triples and their effective deformations are as follows:
(−1, 1/2, (2m+ 3)/(m+ 2),m+ 2)

(−1, (m+ 1)/(m+ 2), 3/2,m+ 2) = β1
I→ (3/2,m+ 3,−1,m/(m+ 1)) = γ1

(−1, 1/2,m+ 3, (m+ 1)/(m+ 2)) = β2
K→ (3,−1,−m− 1,−m− 1) = δ

.


(−1, 1/2, (2m+ 1)/(m+ 1),m+ 3)

(−1, m/(m+ 1), 3/2,m+ 3) = γ1
I→ (3/2,m+ 2,−1, (m+ 1)/(m+ 2)) = β1

(−1, 1/2,m+ 4,m/(m+ 1)) = γ2
K→ (3,−1,−m− 2,−m) = ϵ

.

We have closed loops I(β1) = γ1 and I(γ1) = β1. We also find that the (−1)-triple of δ
and that of ϵ agree as (−1, 3,−m− 1,−m− 1)

(−1, −m− 2, 4,−m− 1)
(−1, 3,−m,−m− 2)

.

They are only closed loops of deformations and there are no deformations to one that
contains ∞ or 0. These surgeries are hyperbolic.

(Case 5: a = 4) We assume a = 4 ≤ b and also b ̸= 4, since (a, b) = (4, 4) is already
studied in the last case. We start with α = (3,−1/m, b− 1,−1/(m+ 1)). First, we take
K(α) = (−1, 1/(m+ 1), 3− b, 1/(m+ 2)), whose (−1)-triple is(−1, 1/(m+ 1), 3− b, 1/(m+ 2))

(−1, 2− b, (m+ 2)/(m+ 1), 1/(m+ 2))
(−1, 1/(m+ 1), (m+ 3)/(m+ 2), 2− b)

.

For each (−1, x, y, z) above, we can check ⟨jk⟩(x, y, z) ∩ {∞, 0} = ∅ and that

⟨jk⟩(x, y, z) ̸∋ −1.

They have no effective deformations except going back. Thus these surgeries are hyper-
bolic. The proof of the case m ≥ 2 is completed. □

3.3. Proof of Theorem 1.1 (Case m = 1)
Condition. (Case m = 1) In this subsection, we study Dehn surgeries (MZ; 2+a, 2+ b)
with a, b ∈ Z. In contrast to the case m ≥ 2, we do not assume a ≤ b for a while. In
Section 4, we will verify that, if a or b equals to 0, 1, 2 or 3, the surgeries (MZ; 2+a, 2+b)
are exceptional, thus we assume that

{a, b} ∩ {0, 1, 2, 3} = ∅. (3)

Then, to prove Theorem 2.4, we have to show

Claim. The surgery (MZ; 2 + a, 2 + b) is hyperbolic except when (a, b) = (−1,−1).
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By the fact (1), we study α = (a − 1,−1, b − 1,−1/2) ∈ Q4. It contains a −1 (as
−1/m), thus we take a dihedral deformation RC(α) = (−1, a − 1,−1/2, b − 1), whose
(−1)-triple is (−1, a− 1,−1/2, b− 1) = α1

(−1,−3/2, a, b− 1) = α2

(−1, a− 1, b,−3/2) = α3

.

For each (−1, x, y, z) above, we can check ⟨jk⟩(x, y, z) ∩ {∞, 0} = ∅ under condition (3).
Here we use ⟨jk⟩(−1/2) = {−1/2, 1/3, 5/2, 5/3}. On the other hand, we have

(i) On α1, ⟨jk⟩(a− 1,−1/2, b− 1) ∋ −1 iff “a = 4 or b = 4”,
(ii) On α2, ⟨jk⟩(−3/2, a, b− 1) ∋ −1 iff “a = −1 or b = 4”, and
(iii) On α3, ⟨jk⟩(a− 1, b,−3/2) ∋ −1 iff “a = 4 or b = −1”,

respectively. Here, it is proved that if {a, b} ∩ {−1, 0, 1, 2, 3, 4} = ∅, the surgeries are
hyperbolic. We start with the case a = 4 (a = 4 or b = 4, more precisely).

(Case 1: a = 4 and b ̸= −1, 4) We recall αi (i = 1, 2, 3) with a = 4 and take the
effective deformations:

(−1, 3,−1/2, b− 1) = α1
J→ (1/2,−1, 1/3, 3− b) = β

(−1,−3/2, 4, b− 1) = α2

(−1, 3, b,−3/2) = α3
J→ (1/2,−1, b/(b− 1), 7/2) = γ

.

The (−1)-triples of β and γ are(−1, 1/2, 3− b, 1/3) = β1

(−1, 2− b, 3/2, 1/3) = β2

(−1, 1/2, 4/3, 2− b) = β3

,

(−1, 1/2, 7/2, b/(b− 1)) = γ1

(−1, 5/2, 3/2, b/(b− 1)) = γ2

(−1, 1/2, (2b− 1)/(b− 1), 5/2) = γ3

.

We do not have to go back from β1 to K(β1) = α1, and from γ1 to K(γ1) = α2. Their
effective deformations are only the following four:

I(β2) = (3/2, b/(b− 1),−1, 5/2),
K(β3) = (3,−1, 2/3, (b− 2)/(b− 1)),

I(γ2) = (3/2, 1/3,−1, 2− b),
K(γ3) = (3,−1,−1/(b− 1), 5/3).

The (−1)-triples of I(β2) (and I(γ2), respectively) are related to those of γis (and βis)
as below. They are closed loops of deformations, up to dihedral deformation:(−1, 5/2, 3/2, b/(b− 1)) = γ2

(−1, 1/2, 7/2, b/(b− 1)) = γ1

(−1, 5/2, (2b− 1)/(b− 1), 1/2) = γ3

,

(−1, 1/3, 3/2, 2− b) = β2

(−1, 1/2, 4/3, 2− b) = β3

(−1, 1/3, 3− b, 1/2) = β1

.

On the other hand, the (−1)-triples of K(β3) and K(γ3) are related to each other(−1, 3, (b− 2)/(b− 1), 2/3)
(−1, −1/(b− 1), 4, 2/3)
(−1, 3, 5/3,−1/(b− 1))

,

(−1, 3, 5/3,−1/(b− 1))
(−1, 2/3, 4,−1/(b− 1))
(−1, 3, (b− 2)/(b− 1), 2/3)

.

They are also closed loops of deformations. It is proved that surgeries “a = 4 and
b ̸= −1, 4” are hyperbolic.
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Before starting the next case, we survey the complicated network of deformations as
a circuit of deformations (see the diagram and the table in Figure 8). It starts from
(−1, 3,−1/2, b− 1) as [0]. First, we name the (−1)-triple of [0] as [0-0], [0-1], [0-2]. Here,
[0-0]=[0], up to dihedral deformation. Second, we study all possible effective deformations
(by J,K and I) of them, and number them consecutively as [1], [2],. . .,[n1]. We draw an
arrow with a symbol J,K or I in the diagram. Note that arrows are reversible. Third,
for the ones which contains −1 as entries among the results of effective deformations, we
study their (−1)-deformations, which we name the (−1)-triple of [i] as [i-0] (=[i]), [i-1], [i-
2]. Next, we study all effective deformations and number them consecutively as [n1 + 1],
[n1 + 2],. . .,[n2]. Here, we ignore going back (from [i-0]=[i]) to older ones. We repeat
these steps and make the diagram. When the same element (up to dihedral deformation)
appears twice, we connect them by a thin curve (with a symbol =, in Figure 8). The
symbol • means a terminal point of deformations, i.e., no effective deformation (except
going back) from it.

(Case 2: (a, b) = (4, 4)) Then α = (3,−1, 3,−1/2) ∈ Q4. Since the calculation is the
same as the last case, we get them by putting b = 4 to each entry b in the the last case.
We underline such entries. We are interested in extra deformations, i.e., deformations
that appear only if b = 4.

The first dihedral deformation is RC(α) = (−1, 3,−1/2, 3), whose (−1)-triple and
effective deformations are

(−1, 3,−1/2, 3) = α1
J→ (1/2,−1, 1/3,−1) = β

(−1,−3/2, 4, 3) = α2

(−1, 3, 4,−3/2) = α3
J→ (1/2,−1, 4/3, 7/2) = γ

.

It holds that α2 = α3 in this case. The (−1)-triples of β and γ are(−1, 1/2,−1, 1/3) = β1

(−1, −2, 3/2, 1/3) = β2

(−1, 1/2, 4/3,−2) = β3

,


(−1, 1/2, 7/2, 4/3) = γ1

(−1, 5/2, 3/2, 4/3) = γ2

(−1, 1/2, 7/3, 5/2) = γ3

.

There are four effective deformations as in the last case:
I(β2) = (3/2, 4/3,−1, 5/2),

K(β3) = (3,−1, 2/3, 2/3),
I(γ2) = (3/2, 1/3,−1,−2),
K(γ3) = (3,−1,−1/3, 5/3).

As in the last case, (−1)-triple of I(β2) is equal to {γ2,γ1,γ3}. that of I(γ2) is equal to
{β2,β3,β1}. The (−1)-triples of K(β3) and K(γ3) are both equal to

(−1, 3, 2/3, 2/3)

(−1, −1/3, 4, 2/3)

(−1, 3, 5/3,−1/3)
.

Here we study the underlined entries (those obtained by putting b = 4 in the calculus of the
last case) above, and search for ones which possibly cause extra deformations. They are
only β = (−1, 1/2,−1, 1/3) (= C2(β1)), but its deformation is absorbed by the dihedral
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symmetry. There exist only closed loops of deformations. The surgery (a, b) = (4, 4) is
hyperbolic.

(Case 3: (a, b) = (4,−1) or (−1, 4)) Then α = (3,−1,−2,−1/2) ∈ Q4. The method is
same as in Case 2. Since the calculation is same as Case 1, we put b = −1 to each entry
b there, and underline such entries. We are interested in extra deformations that appear
only if b = −1.

The first dihedral deformation is RC(α) = (−1, 3,−1/2,−2), whose (−1)-triple is
(−1, 3,−1/2,−2) = α1

J→ (1/2,−1, 1/3, 4) = β
(−1,−3/2, 4,−2) = α2

(−1, 3,−1,−3/2) = α3
J→ (1/2,−1, 1/2, 7/2) = γ

.

This γ has a dihedral symmetry in this case. The (−1)-triples of β and γ are(−1, 1/2, 4, 1/3) = β1

(−1, 3, 3/2, 1/3) = β2

(−1, 1/2, 4/3, 3) = β3

,


(−1, 1/2, 7/2, 1/2) = γ1

(−1, 5/2, 3/2, 1/2) = γ2

(−1, 1/2, 3/2, 5/2) = γ3

.

In contrast to Case 1 and 2, there exist eight effective deformations as below:
I(β2) = (3/2, 1/2,−1, 5/2),

K(β3) = (3,−1, 2/3, 3/2),

J(β2) = (1/2,−1, 3, 5/3),
J(β3) = (1/2, 3/2, 4,−1),

I(γ2) = (3/2, 1/3,−1, 3),
K(γ3) = (3,−1, 1/2, 5/3),

K(γ2) = (3, 5/3, 1/2,−1),
I(γ3) = (3/2, 3,−1, 1/3) = β2.

In fact, not only the first four but also four more effective deformations exist. It holds
that J(β2) = K(γ2) = K(γ3), up to dihedral deformations, and that I(γ3) = β2, which
appeared before.

As we saw in Case 1, (−1)-triple of I(β2) is equal to {γ2,γ1,γ3}, and that of I(γ2) is
equal to {β2,β3,β1}. The (−1)-triples of K(β3) and K(γ3) are both equal to

(−1, 3, 3/2, 2/3) = K(β3)

(−1, 1/2, 4, 2/3) = δ

(−1, 3, 5/3, 1/2) = K(γ3)
.

The new δ has an effective deformation, but we suspend it. Finally, we take (−1)-triple
of J(β3) and their effective deformations (we ignore going back):

(−1, 4, 3/2, 1/2)

(−1, 1/2, 5, 1/2)
K→ (3,−1,−3,−1)

(−1, 4, 3/2, 1/2)

.

We take (−1)-triples of (3,−1,−3,−1) and their effective deformations:
(−1, 3,−1,−3)
(−1, −2, 4,−3)

(−1, 3,−2,−2)
J→ (1/2,−1, 2/3, 4) = δ

.
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We reach the δ that appeared before.
There exists only closed loops of deformations (see the circuit of deformations and the

table in Figure 9, where we omit symbols “=”). Note that the circuit is more complicated
than Figure 8 because of the extra deformations. The surgery (a, b) = (4,−1) is (and, by
symmetry, (−1, 4) are also) hyperbolic.

(Case 4: a = −1 and b ̸= −1, 4) We recall αi (i = 1, 2, 3) with a = −1.(−1,−2,−1/2, b− 1) = α1

(−1,−3/2,−1, b− 1) = α2

(−1,−2, b,−3/2) = α3

.

Though α2 has two (−1)s, the (−1)-triple of the second (−1) is equal to that of the first
(−1) by the symmetry. By the assumption (3) and “b ̸= −1, 4”, there are no effective
deformations. These surgeries are hyperbolic.

(Case 5: (a, b) = (−1,−1)) In this case α3 = (−1,−2,−1,−3/2) as (−1, a−1, b,−3/2).
This is a rare case (3) in MPR list in Theorem 3.2. The proof is completed. □

m

x y

−→
0

m

−mx −my

x y y+1y+1 x+1x 1−2 −1 2

←→ ←→

q

−→

=−1

−4q
−1−4q

−→

−1
−2

−6q
−3

=

−1
−2

−6q

−3

Figure 6. Some handle calculus
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4. Nonhyperbolic case
We prove non-hyperbolic surgeries in Theorems 2.1, 2.3(2) and 2.4. In each figure, we

stop drawing when the rest of calculus is obvious. Parts of the calculus in Figure 6 may
help the readers.

Proof of Theorem 2.1. The proof is given by Kirby calculus in Figures 10, 11, 12
and 13. □

Proof of Theorem 2.3. Completeness follows from Theorem 1.1. For the resulting
manifold of (AY2; 4, 9) in (2) in the theorem, see the calculus in Figure 14. □

Proof of Theorem 2.4. Completeness follows from Theorem 1.1. By Remark 2.5,
we only have to consider the resulting manifold of (MZ; 2, q) and (MZ; 1, 1). The proof
is given by the calculus in Figures 15, 16 and 17. □
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Figure 7. Exceptional surgeries along (AYm; p, q)
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Figure 8. Circuit of deformations: Case 1 (m = 1, a = 4 and b ̸= −1, 4)
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Figure 9. Circuit of deformations: Case 3 (m = 1, (a, b) = (4,−1))
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Figure 18. Geography of exceptional Dehn surgeries
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