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Computing rotation numbers in open books

Sebastian Durst and Marc Kegel

Abstract. We give explicit formulas and algorithms for the computation of the rota-
tion number of a nullhomologous Legendrian knot on a page of a contact open book.
On the way, we derive new formulas for the computation of the Thurston–Bennequin
invariant of such knots and the Euler class and the d3-invariant of the underlying
contact structure.

1. Introduction
The classical invariants, the Thurston–Bennequin invariant tb and the rotation number

rot, are the two most fundamental invariants of nullhomologous Legendrian knots in
contact 3-manifolds. They carry a lot of information about the contact structure (for
example the contact structure is overtwisted if and only if there exists a Legendrian
unknot with tb = 0, see [7]) and the topological knot type (for example the classical
invariants give obstructions to sliceness of a knot in S3, see [20]).

According to Giroux, there is a deep connection between contact manifolds and open
books (cf. [8]). In particular, to every open book presenting a 3-manifold there exists a
(up to isotopy) unique contact structure on this 3-manifold with contact planes arbitrarily
close to the pages of the open book outside a neighbourhood of the binding. Throughout
the paper, we use the expression contact open book to emphasize that we are in fact
considering the contact 3-manifold associated with the abstract open book in this way.

In this paper we continue in the spirit of [6] and consider Legendrian knots sitting
on the page of a contact open book. In [6] we explained how to check if such a knot is
nullhomologous and if so, how to compute its Thurston–Bennequin invariant. Here we
concentrate on the second classical invariant, the rotation number, and give a formula to
compute it.

Theorem 1.1. Let K be a Legendrian knot sitting on the page of a contact open book
(Σ, ϕ) with monodromy ϕ given as a concatenation of Dehn twists along non-isolating
curves. Then there exists an arc basis of Σ such that the intersection behaviour of K and
the Dehn twist curves with the arcs give criteria and formulas to

(a) decide whether K is (rationally) nullhomologous,
(b1) compute the (rational) Thurston–Bennequin invariant of K if K is (rationally)

nullhomologous,

Key words and phrases. Legendrian knots, rotation number, open books.

71



DURST and KEGEL

(b2) compute the (rational) rotation number of K if K is (rationally) nullhomologous,
(b3) compute the (rational) self-linking number of a transverse push-off of K if K is

(rationally) nullhomologous,
(c) compute the Poincaré dual of the Euler class of the contact structure,
(d) decide whether the Euler class of the contact structure is torsion and if so, compute

its d3-invariant
(see Algorithm 6.1).

Readers only interested in using the resulting formulas can proceed to Algorithm 6.1
and the following discussion in Section 6.

Several results in this direction have been obtained earlier. Etnyre and Ozbagci [10]
gave a formula to compute the Euler class and the d3-invariant of a contact open book,
which in many cases can be easier to compute than the one given in this paper. In order to
do so, they also developed a method to calculate the rotation number of a Legendrian knot
on the page of an open book (see also the explicit calculations in [16]). In [6] a method for
checking if a Legendrian knot sitting on a page is nullhomologous is developed, and if so,
a formula for its Thurston–Bennequin invariant is provided. On the other hand, Gay and
Licata [11] studied Legendrian knots in open books which in general are not contained in
a page by a generalisation of the front projection, where it is possible to compute tb as
well.

Throughout this paper, all homology groups are understood to be integral unless in-
dicated otherwise. We will also, by abuse of notation, use the same symbol for a curve,
the homology class and the positive Dehn twist it represents.

We will first generalise an example of [17] to compute the rotation number of a Legen-
drian knot sitting on the page of a specific planar open book of (S3, ξst). Afterwards we
use the method of [2] to find an embedding of a more general non-planar abstract open
book into (S3, ξst) and give formulas for computing the rotation number in these cases.

For the general case, we first use Avdek’s algorithm [2] for transforming a contact
open book into a contact surgery diagram along a Legendrian link and then compute the
invariants from the resulting contact surgery diagram via [5], which builds on [17, 13, 3,
15].

We begin with an application of our results on the binding number of Legendrian knots,
which we propose to study in analogy to the binding number of a contact manifold as
introduced in [10].

Application to the binding number of Legendrian knots

Let K be a Legendrian knot in a contact 3-manifold (M, ξ). Then the support genus
sg(K) is defined to be the minimal genus of the page of a contact open book decomposition
of (M, ξ) in which K is contained in a single page, i.e.

sg(K) = min
{
g(Σ) | K ⊂ Σ

}
,

where g(Σ) is the genus of the surface Σ (see [18]).
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In analogy to the binding number of a contact manifold as introduced by [10], we
propose to define the binding number bn of K to be the minimal number of bound-
ary components of the pages of contact open book decompositions with minimal genus
containing K in a page, i.e.

bn(K) := min
{
|∂Σ| : K ⊂ Σ with g(Σ) = sg(K)

}
.

Corollary 1.2. Let K be a Legendrian knot with non-vanishing rotation number and
support genus sg(K) = 1 in an arbitrary contact 3-manifold. Then the binding number of
K is at least two.

Note that this also becomes evident from the proof of Lemma 6.1 in [10].

Proof.
Suppose that K has support genus and binding number both equal to one, then one can
easily check using Theorem 1.1 or via the explicit formulas given in Algorithm 6.1 that
the rotation number of K vanishes. □

Example 1.3. It is known that all Legendrian realizations of torus knots T2,2n+1, n ∈ N,
with Thurston–Bennequin invariant at least one and non-vanishing rotation number have
support genus equal to one (see Theorem 1.3 in[16]) and thus binding number at least
two.

2. Background: Legendrian curves on open books
For the basics in low-dimensional contact topology we refer the reader for example

to [8, 19, 12]. Nevertheless, we will briefly recall some well-known facts about which
curves sitting on the page of a contact open book represent Legendrian knots.

Let L be a simple closed curve on a convex surface S. We call L non-isolating if
every component of S \ L has non-empty intersection with the dividing set Γ of S.

Lemma 2.1. A simple closed curve L on S represents a Legendrian knot (i.e. can be
realised as a Legendrian knot by a small perturbation of S through convex surfaces) if and
only if L is non-isolating.

Proof. A non-isolating simple closed curve always represents a Legendrian knot by the
Legendrian realisation principle (see [14, Theorem 3.7]). So let L be not non-isolating,
i.e. there is a component S0 of S \ L with S0 ∩ Γ = ∅, and assume that L represents a
Legendrian knot. Without loss of generality, we have divΩ(X) > 0 on S0, where Ω is a
volume form on S and X the vector field defining the characteristic foliation. Hence,

0 <

∫
S0

divΩ(X) =

∫
S0

d(iXΩ) =

∫
L

iXΩ =

∫
L

α = 0,

where α denotes the contact form and the last equality holds because L is Legendrian. □

Here we are interested in the special case of the page Σ of an open book, which is convex
with Γ = ∂Σ. In particular, if ∂Σ is connected, L represents a Legendrian knot if and only
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if L is non-separating. Note also, that for every Legendrian link in a contact manifold
there exists a compatible open book decomposition such that the link is contained in a
page (cf. [1] or [8, Corollary 4.23]), i.e. our assumption of a Legendrian knot sitting on
the page of an open book is not exotic at all.

3. A special planar case
We begin by discussing a method to compute the rotation number in an easy planar

case which is based on the idea presented in [17, Lemma 4.1].
Suppose that Σ is planar, i.e. Σ is a disc with k holes

Σ ∼= D2 \

(
k⊔

i=1

D2
i

)
,

and the monodromy is given by ϕ = β+1
k ◦ · · · ◦ β+1

1 , where β+1
i denotes a positive Dehn

twist along a curve βi parallel to the inner boundary ∂D2
i . We furthermore assume that

the curves βi are oriented consistently with the boundary orientation induced by Σ (see
Figure 1). In particular, by destabilising the open book, we see that (Σ, ϕ) describes the
standard contact 3-sphere (S3, ξst) and from this it also follows that every Legendrian
knot K sitting on the page of this contact open book is some Legendrian unknot.

β1 β2

β3β4

Figure 1. A planar open book decomposition of (S3, ξst)

Proposition 3.1. Let K be a Legendrian knot sitting on the page of a planar open book
(Σ, ϕ) with ϕ as described above. Then the following holds:

(1) K =
∑k

i=1 biβi ∈ H1(Σ) such that either all bi ∈ {+1, 0} or all bi ∈ {−1, 0},

74



Computing rotation numbers in open books

(2) the rotation number of K computes as

rot(K) =

k∑
i=1

bi − sign

(
k∑

i=1

bi

)
.

Proof.
(1) First note, that a simple closed curve cannot have |bi| > 1 or it would have self-
intersections. With orientations chosen as above, one also observes that all non-vanishing
bi have to be equal.
(2) By the first statement, we can glue small oriented rectangular bands connecting the
biβi with non-vanishing coefficients bi inside Σ in such a way that the oriented boundary
of the resulting region is isotopic to K in Σ (cf. Figure 2). The orientation of these
rectangles coincides with the orientation of the page Σ exactly if the bi are positive.

Note that the βi are unknots with Thurston–Bennequin invariant −1 and vanishing
rotation number. Indeed, βi can be assumed to be parallel to a Dehn twist curve arising
by a stabilisation. These curves bound a disc in the complement and by the Dehn twist,
the Seifert framing differs by one from the contact framing given by the page. So βi is a
tb = −1 unknot, i.e. the rotation number is zero. Furthermore, a Seifert surface for K is
given by the union of the discs bounded by the non-vanishing biβi (in the complement of
the page) and the attached bands in the page. The rotation number computes as the sum
of the indices of a vector field in the contact structure extending the positive tangent of
K over Σ. As rot(βi) = 0, an extension without zeros is possible over the discs bounded
by βi and we only have to study the bands. As the contact framing and the page framing
coincide, this reduces the problem to extending the positive tangent vector field to the
boundary of the bands over the bands in Σ. This is ±1 for each band by Poincaré–Hopf,
depending on whether the orientation of the band agrees with the orientation of the page
Σ or not. Hence, the rotation number of K is a signed count of the number of bands, i.e.
rot(K) =

∑k
i=1 bi − sign

(∑k
i=1 bi

)
. □

Remark 3.2. The formula from Proposition 3.1 can also be obtained by observing that
a curve enclosing k-holes is the result of (k− 1)-times stabilising a curve running around
a single hole. The latter has Thurston–Bennequin invariant −1 and vanishing rotation
number.

Example 3.3. Consider the Legendrian knot L on the planar open book of (S3, ξst) as
depicted in Figure 2. The class in the first homology group of Σ represented by L can be
written as

L =

4∑
i=1

biβi = β2 + β3 + β4.

By Proposition 3.1, the rotation number of L is

rot(L) =

4∑
i=1

bi − sign

(
k∑

i=1

bi

)
= 2.
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β1

β2

β3

β4

L
−

−

Figure 2. A Legendrian knot on the page of a planar open book of (S3, ξst)

This method is not known to generalise to non-planar open books. One reason is, that
on surfaces of higher genus, the isotopy class of a curve is not determined by its homology
class.

4. Another special case
Next we consider knots on open books (Σ, ϕ) of the standard contact 3-sphere with an

arbitrary page but a special monodromy. Denote the genus of Σ by g and the number of
boundary components by h+ 1. Suppose that the monodromy is given by

ϕ = β+1
g+h ◦ · · · ◦ β+1

g+1 ◦ β+1
g ◦ α+1

g ◦ · · · ◦ β+1
1 ◦ α+1

1

as indicated in Figure 3. We also choose orientations of αi and βi as in the picture. In
particular, the signed count αi • βj of intersection points between αi and βj is δij . Let
ri, i = 1, . . . , g + h− 1, be the depicted reducing arcs, which do not intersect the α- and
β-curves. I.e. when cutting along them the page Σ decomposes into a collection of tori
with a disc removed and annuli. Let ai and bi be arcs on the page Σ representing a basis
of H1(Σ, ∂Σ) dual to {αi, βi} with respect to the intersection product (oriented such that
αi • ai = 1, βj • bj = 1).

The following algorithm will be applied to a word corresponding to the knot K in
Proposition 4.2. Note that the conventions presented below for labelling vertical tan-
gencies in this setting by ρ+ and λ+ do not agree with those for counting cusps of a
Legendrian front projection as in [12, Proposition 3.5.19].
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α1 αg

β1 βg

c1 cg−1

r1 rg−1

βg+1 βg+h

rg rg+1 rg+h−1

cg
cg+1

cg+h−1

Figure 3. A non-planar open book of (S3, ξst) with arbitrarily many
boundary components

Algorithm 4.1. Let w be a word in ⟨αi, βi | i = 1 . . . , k⟩. Set λ+ to be the number
of times a β−1 is followed by an α−1 of the same index also considering the step from
the last to the first letter, and similarly, set ρ+ equal to the number of times an α−1 is
followed by a β−1 of the same index.

Denote places where the index changes by ru (rd) if the index increases (decreases) –
including the last position if the index of the last letter is not equal to the index of the
first letter. For instance, in the word

α1β2α2β
−1
4 α−1

3 β2

we have five positions of index changes:
α1ruβ2α2ruβ

−1
4 rdα

−1
3 rdβ2rd.

Now run through the index changes and increase λ+ and ρ+ according to the following
rule:

• increase λ+ by 1 for
– a β−1 followed by ru
– rd followed by an α−1

• increase ρ+ by 1 for
– an α−1 followed by rd
– a β followed by rd.

In the example sequence above, we have λ+ = 0 = ρ+ as staring values and then get
λ+ = 1 and ρ+ = 2 as the final result after following the rules for the increments.

Proposition 4.2. Let K be an oriented non-isolating knot on the abstract open book
(Σ, ϕ) of (S3, ξst) specified above. Choose a starting point on K and write K as a word
in the αi and βi by noting intersections with ai and bi when traversing along K. Then
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the rotation number of K is
rot(K) = ρ+ − λ+

with ρ+ and λ+ calculated from the presentation of K as described in Algorithm 4.1.

Proof.
First note that without loss of generality, we can assume that the page Σ has only a
single boundary component by stabilising the open book along arcs not intersecting the
ri connecting a hole to the outer boundary component. Then the open book (Σ, ϕ)
can be embedded into (S3, ξst) with the front projection shown in Figure 4 (in lightly
shaded regions the orientation of Σ agrees with the blackboard orientation, in darkly
shaded regions the orientations disagree) – the embedded page Σ is the ribbon of the
Legendrian graph displayed in the upper half of Figure 4 (see [2] for details). Note that in
particular, the contact vector field ∂z is transverse to the embedded page. Furthermore,
after rescaling the embedding can be assumed to be such that in R3 ⊂ S3 we have

[−1, 1]× Σ −→
(
R3, ξst = ker(xdy + dz)

)
,

(t, p) 7−→ p+ (0, 0, t).

I.e. for a point p in the interior of the embedded page {0}×Σ the line through p parallel
to the z-axis hits every page in [−1, 1]×Σ exactly once. So we can relate a specific page
in [−1, 1]× Σ to its shift in the z-direction.

The rotation number of a nullhomologous Legendrian knot with respect to a Seifert
surface S is given by the rotation of its tangent vector with respect to a fixed trivialisation
of the contact planes over S. If the contact structure is globally trivialisable, one can
instead fix a global trivialisation. The standard contact structure ξst on R3 ⊂ (S3, ξst)
can be trivialised globally by ∂x and ∂y −x∂z. As the contact vector field ∂z is transverse
to the embedded page Σ of the open book, this trivialisation also induces a trivialisation
of the tangent planes to Σ. Then the rotation number of the Legendrian realisation of a
curve sitting on the page agrees with the rotation of the original curve on the page with
respect to the induced trivialisation.

The projection of ∂x to Σ along ∂z lies in the xz-plane. Observe that the ∂z-component
changes sign when passing from a lightly shaded region to a darkly shaded region and
vice-versa. To compute the rotation of a curve on the embedded page which is non-
singular in the front projection diagram, we thus have to count vertical tangencies in the
front projection according to the rule described in Figure 5. The rotation then equals
ρ+ − λ+. Alternatively, we can also compute it as λ− − ρ− where λ− and ρ− are defined
analogously to λ+ and ρ+.

In fact, we do not even have to count all vertical tangencies, but we can ignore those
cancelling each other. To this end, we write K as a word in the αi and βi by noting inter-
sections with ai and bi when traversing along K. Observe that the α- and β-curves have
vanishing rotation, as they have two vertical tangencies cancelling each other. Changing
from αi to βi accounts for a λ−, changing from βi to αi for a ρ−. Likewise, the change
from α−1

i to β−1
i gives a ρ+: the one from β−1

i to α−1
i a λ+. It is easily verified that
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α1
α2 αg

β1 β2 βg

c1
c2

cg−1

Figure 4. An embedding into (S3, ξst) of the (stabilised) abstract open
book from Figure 3 and the Legendrian graph shown in the front projec-
tion

λ−λ+
ρ− ρ+ λ− λ+

ρ−ρ+

Figure 5. The labelling of the vertical tangencies.

all other changes with fixed index do not introduce vertical tangencies. In particular, a
knot not intersecting any of the reducing arcs has vanishing rotation number, since it
has λ+ = ρ+. It thus remains to inspect those tangencies occurring before or after an
intersection with a reducing arc. These intersections happen when the index of the letters
change. The vertical tangencies occurring in these cases are summarised in Table 1.

Hence, the rotation number can be computed from the word according to the rule given
in Algorithm 4.1. □
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leaving to the right from count
α λ−

α−1 –
β –

β−1 λ+

coming from the left to count
α ρ−

α−1 –
β –

β−1 ρ+

leaving to the left from count
α –

α−1 ρ+
β ρ+

β−1 –
coming from the right to count

α –
α−1 λ+

β λ−
β−1 –

Table 1

Example 4.3. Consider the knot on the embedded page of the open book of (S3, ξst)
given in Figure 6. The knot corresponds to the word α1β2α2α

−1
3 β3β2. The vertical

tangencies corresponding to the α- and β-curves which immediately cancel are marked in
green. The remaining vertical tangencies are marked blue and labelled. We have ρ+ = 2,
λ+ = 0, ρ− = 1, λ− = 3. I.e. the rotation number of the Legendrian knot represented by
K is

rot(K) = ρ+ − λ+ = λ− − ρ− = 2.

We will now apply Algorithm 4.1 to the word α1β2α2α
−1
3 β3β2.

As neither a β−1 is followed by an α−1 of the same index, nor an α−1 by a β−1, we
set λ+ = 0 = ρ+ as initial values. Next, we consider the index changes:

α1ruβ2α2ruα
−1
3 β3rdβ2rd.

The positions β3rd and β2rd both increase ρ+ by one. All other positions leave the counts
unchanged. Hence, the algorithm yields

rot(K) = ρ+ − λ+ = 2.

Note that we could also adapt the rules specified in the algorithm to consider ρ− and λ−
instead using the proof of the preceding proposition.
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λ− ρ− λ−

ρ+

λ−

ρ+

Figure 6. A knot on an embedded page in (S3, ξst). Vertical tangencies
cancelling each other are marked green, other vertical tangencies are
marked blue and labelled.

5. The general case
Now we are prepared to deal with a Legendrian knot in a general contact open book.

The idea is to change the open book to the special case discussed in the previous section
by a sequence of surgeries, then compute the rotation number in (S3, ξst) as above and
finally use [5] with the inverse surgeries to get the rotation number of the Legendrian in
the original open book. The result will be presented in a formula that can be directly
computed with the data of the original open book.

In the following remark, we will briefly recall how to compute the rotation number in
contact surgery diagrams.

Remark 5.1 (Computing rot in a surgery diagram (see [5])). For an oriented Legendrian
link L = L1⊔. . .⊔Lk in (S3, ξst) let (M, ξ) be the contact manifold obtained from (S3, ξst)
by contact (1/ni)-surgeries (ni ∈ Z) along Li. Denote the topological surgery coefficients
by pi/qi. I.e.

pi
qi

=
ni tb(Li) + 1

ni
.

Let L0 be an oriented Legendrian knot in the complement of L and define the vector l
with components li = l0i and the generalised linking matrix

Q =


p1 q2l12 · · · qnl1k

q1l21 p2
... . . .

q1lk1 pk

 ,

where lij := lk(Li, Lj). The knot L0 is (rationally) nullhomologous in M if and only
if there is an integral (rational) solution a of the equation l = Qa, in which case its
(rational) rotation number in (M, ξ) with respect to the Seifert class Σ̂ constructed in [5]
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is equal to

rotM (L0, Σ̂) = rotS3(L0)−
k∑

i=1

aini rotS3(Li).

Proof of Theorem 1.1.
Let K ⊂ (M, ξ) be a Legendrian knot sitting on the page of a compatible open book

(Σ, ϕ = T±nl

l ◦ · · · ◦ T±n1
1 )

with monodromy encoded in a concatenation of Dehn twists, where T±n denotes n positive
(resp. negative) Dehn twists along the non-isolating oriented curve T (n ∈ N). We denote
the genus of Σ by g and the number of boundary components by h+ 1.

In the following, we want to choose a special arc basis of Σ to exactly mimic the
setting from Proposition 4.2 (also see Remark 5.2). Together with a suitable monodromy
yielding (S3, ξst), this will enable us to use the proposition to compute the invariants first
in (S3, ξst) and then to apply the surgery formulas to obtain the desired result.

Choose reducing arcs r1, . . . , rg+h−1 such that when cutting along ri

• Σ decomposes into a surface Σi of genus i containing r1, . . . , ri−1 with one bound-
ary component and a surface of genus g − i with h+ 1 boundary components for
i = 1, . . . , g,

• Σ decomposes into a surface Σi of genus g containing r1, . . . , ri−1 with i + 1
boundary components and a disk with h− i holes for i = g + 1, . . . , g + h− 1.

Then choose an arc basis of Σi \ Σi−1. Orient and label the arcs by ai, bi such that
when travelling along the oriented boundary of Σ from

• r1 to r1
– first a1 is met pointing outwards, then b1 is met pointing inwards if g ≥ 1
– b1 is met and pointing outwards if g = 0

• ri−1 to ri only bi is met and pointing outwards (i = 2, . . . , g + h− 2)
• rg+h−1 to rg+h−1

– first bg is met pointing outwards, then ag is met pointing outwards if h = 0
– bg+h is met and pointing outwards if h > 0.

Choose non-trivial oriented simple closed curves αi, βi representing a basis of H1(Σ)
dual to the arcs with respect to the intersection product on Σ oriented such that αi•ai = 1,
βj • bj = 1 and αi • βi = 1 (i.e. the situation is as in Figure 3).

Remark 5.2. Note that the arc basis cannot be chosen arbitrarily, as we will use it to
write the knot as a word in αi, βi as above and use the formula from Proposition 4.2 to
compute the rotation from this word. For this to work with the given formula, we have
to ensure that the word we get in the abstract setting is the same as the word we get
in the embedded case, which coincides with the specific abstract open book depicted in
Figure 3. In particular, the word obtained from the oriented boundary of the page is

α−1
1 β1α1β

−1
1 β−1

2 · · ·β−1
g+hα

−1
g βgαg · · ·α−1

2 β2α2.
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A different arc basis would require a different formula to compute the rotation number
from the word (see also Example 6.4).

This is only important for calculating the rotation number in (S3, ξst) which is not
determined by the class of the knot in the homology of the page – the linking information
required to compute the rotation number via the surgery formula is purely homological
and does not depend on the specific ordering. In particular, we can use an arbitrary arc
basis in a planar open book if we use Proposition 3.1 to compute the rotation number of
the involved curves in (S3, ξst).

Observe that we can get from the open book
(Σ, ϕS3 = β+1

g+h ◦ · · · ◦ β+1
g+1 ◦ β+1

g ◦ α+1
g ◦ · · · ◦ β+1

1 ◦ α+1
1 )

to the open book (Σ, ϕ) by a sequence of contact surgeries along Legendrian knots corre-
sponding to the Dehn twist curves.

By the algorithm presented in [2], the surgery link is as follows: every component
corresponding to a Dehn twist sits on a page of the embedded open book. The shift in
the z-direction of the respective page relates to the position of the Dehn twists in the
monodromy factorisation – the later the Dehn twist is performed, the higher the level of
the page. Using Avdek’s convention, we will denote a knot K sitting on the page with
level t by K(t).

Observe that the αi(s), βi(s) are unknots with rotation number zero and Thurston–
Bennequin invariant −1 and that for t ̸= s we have

lk
(
αi(t), βj(s)

)
=

{
0, if i ̸= j or t > s,

−1, if i = j and t < s,

lk
(
αi(t), αj(s)

)
=

{
0, if i ̸= j,

−1, if i = j,

lk
(
βi(t), βj(s)

)
=

{
0, if i ̸= j,

−1, if i = j.

If s = t, the curves form a Legendrian graph on a single page with α and β joined by a
single transverse intersection point.

The first homology class represented by a knot K on Σ can then be written as

K =

g+h∑
i=1

(
(K • ai)αi + (K • bi)βi)

)
and hence

K(t) =

g+h∑
i=1

(
(K • ai)αi(t) + (K • bi)βi(t)

)
,

where (K • ai) is defined to be zero for k > g. The linking number of two knots K1(t)
and K2(s) behaves linearly and distributively with respect to this decomposition. I.e. the
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linking number is easily computable with the linking behaviour of the α and β curves
specified above.

It is well-known that the surgery link in S3 to obtain (Σ, ϕ) is the link L = L1 ⊔ . . . ⊔
L2g+h+l as specified in Table 2 (e.g. see Avdek’s algorithm [2]).

name knot contact surgery coefficient
L1 β1(−1) +1
...

...
...

Lg+h βg+h(−1) +1
Lg+h+1 α1(0) +1

...
...

...
L2g+h αg(0) +1

L2g+h+1 T1(1/l) ∓1/n1

...
...

...
L2g+h+l Tl(l/l) ∓1/nl

Table 2

To compute the rotation number of a knot on a page of (Σ, ϕ) using the method
explained in Remark 5.1, we need the generalised linking matrix Q – which requires us
to know tb for deducing the topological surgery coefficient from the contact one as well
as all linking numbers – and the rotation numbers in (S3, ξst).

For a knot K(t), we have
tbS3

(
K(t)

)
= lk

(
K(t),K(t+ ε)

)
and hence, for i = 1, . . . , l,

tbS3(L2g+h+i) = −
g+h∑
k=1

(
(Ti • ak)2 + (Ti • ak)(Ti • bk) + (Ti • bk)2

)
.

Therefore, the topological surgery coefficient of L2g+h+i is
p2g+h+i

q2g+h+i
=

ni tbS3(Ti)∓ 1

ni
.

Furthermore, the linking behaviour with Lj = βj , j = 1, . . . , g + h is
lk(L2g+h+i, Lj) = −(Ti • bj)

and similarly, for Lg+h+j = αj , j = 1, . . . , g

lk(L2g+h+i, Lg+h+j) = −
(
(Ti • aj) + (Ti • bj)

)
.

84



Computing rotation numbers in open books

The linking number of two surgery knots L2g+h+i and L2g+h+j with i < j can be computed
to be

lk(L2g+h+i, L2g+h+j) = −
g+h∑
k=1

(
(Ti • ak)(Tj • ak) + (Ti • ak)(Tj • bk) + (Ti • bk)(Tj • bk)

)
.

Note that the knot K can be put on the page with the lowest as well as the highest
level. Depending on which is chosen, the class of Seifert surface with respect to which the
rotation number is given in Remark 5.1 might change, and hence the rotation numbers
may differ. However, if the Euler class of ξ vanishes, the rotation number of a nullhomol-
ogous is independent of the Seifert surface. If we choose the knot L0 = K(low) to sit on
a lower page than the surgery link, we get the following linking numbers

lk(L0, Lj) = −
(
(K • aj) + (K • bj)

)
, j = 1, . . . , g + h,

lk(L0, Lg+h+j) = −(K • aj), j = 1, . . . , g,

lk(L0, L2g+h+j) = −
g+h∑
k=1

(
(K • ak)(Tj • ak) + (K • ak)(Tj • bk)

+(K • bk)(Tj • bk)
)
, j=1,…,l.

If on the other hand L0 = K(high) is assumed to sit on a page with the highest level,
we get

lk(L0, Lj) = −(K • bj), j = 1, . . . , g + h,

lk(L0, Lg+h+j) = −
(
(K • aj) + (K • bj)

)
, j = 1, . . . , g,

lk(L0, L2g+h+j) = −
g+h∑
k=1

(
(K • ak)(Tj • ak) + (K • bk)(Tj • ak)

+(K • bk)(Tj • bk)
)
, j = 1, . . . , l.

The only data that is left to compute are the rotation numbers in S3 of the Li, but this
can be done as in Proposition 4.2. Observe that using the formula from [15] also allows
us to calculate the Thurston–Bennequin invariant, which is an alternative to the method
presented in [6]. Similarly, one can directly calculate the Poincaré-dual of the Euler class
and the d3-invariant of the contact structure (see [5, Theorem 5.1]).

Thus, we have proved Theorem 1.1. □

6. Algorithm and examples
We summarise the process and all required formulas in the following algorithm and

illustrate them by giving examples. This section is meant as a self-contained guideline to
do actual computations and can be used independently from the rest of the paper.
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Algorithm 6.1. The setting.
Given is a non-isolating curve K on the page of an open book

(Σg,h+1, ϕ = T±nl

l ◦ · · · ◦ T±n1
1 )

with ni ∈ N and Σg,h+1 a surface of genus g with h + 1 boundary components. The
monodromy is given as a sequence of Dehn twists along non-isolating oriented curves Ti.
The choices.
Choose reducing arcs r1, . . . , rg+h−1 such that when cutting along ri

• Σ decomposes into a surface Σi of genus i with one boundary component con-
taining r1, . . . , ri−1 and a surface of genus g− i with h+1 boundary components
for i = 1, . . . , g,

• Σ decomposes into a surface Σi of genus g with i + 1 boundary components
containing r1, . . . , ri−1 and a disk with h− i holes for i = g + 1, . . . , g + h− 1.

Then choose an arc basis of Σi \ Σi−1 and label it by ai, bi and orient it such that when
travelling along the oriented boundary of Σ from

• r1 to r1
– first a1 is met pointing outwards, then b1 is met pointing inwards if g ≥ 1
– b1 is met and pointing outwards if g = 0

• ri−1 to ri only bi is met and pointing outwards (i = 2, . . . , g + h− 2)
• rg+h−1 to rg+h−1

– first bg is met pointing outwards, then ag is met pointing outwards if h = 0
– bg+h is met and pointing outwards if h > 0.

Choose non-trivial oriented simple closed curves αi, βi representing a basis of H1(Σ) dual
to the arcs with respect to the intersection product on Σ oriented such that αi • ai = 1,
βj • bj = 1 and αi • βi = 1 (i.e. the situation is as in Figure 3).
The definitions.
Define an integral vector l ∈ Z2g+h+l with entries:

lj = −(K • bj),

for j = 1, . . . , g + h,

lg+h+j = −
(
(K • aj) + (K • bj)

)
,

for j = 1, . . . , g,

l2g+h+j = −
g+h∑
k=1

(
(K • ak)(Tj • ak) + (K • bk)(Tj • ak)

+(K • bk)(Tj • bk)
)
,

for j = 1, . . . , l,
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Define an integral (2g + h+ l)× (2g + h+ l)-matrix Q with entries:

Qi,j = 0,

for i, j = 1, . . . , 2g + h,

Q2g+h+i,2g+h+i = ∓1− ni

g+h∑
k=1

(
(Ti • ak)2 + (Ti • ak)(Ti • bk) + (Ti • bk)2

)
,

for i = 1, . . . , l,

Q2g+h+i,j = −(Ti • bj),

for i = 1, . . . , l, j = 1, . . . , g + h,

Q2g+h+i,j = −
(
(Ti • aj) + (Ti • bj)

)
,

for i = 1, . . . , l, j = g + h+ 1, . . . , 2g + h,

Qi,2g+h+j = −nj(Tj • bi),

for i = 1, . . . , g + h, j = 1, . . . , l,

Qg+h+i,2g+h+j = −nj

(
(Tj • ai) + (Tj • bi)

)
,

for i = 1, . . . , g, j = 1, . . . , l,

Q2g+h+i,2g+h+j = −nj

g+h∑
k=1

(
(Ti • ak)(Tj • ak) + (Ti • ak)(Tj • bk)

+(Ti • bk)(Tj • bk)
)
, for i < j, i, j = 1, . . . , l,

Q2g+h+i,2g+h+j = −ni

g+h∑
k=1

(
(Ti • ak)(Tj • ak) + (Ti • bk)(Tj • ak)

+(Ti • bk)(Tj • bk)
)
, for i > j, i, j = 1, . . . , l.

For an oriented non-isolating curve L we define the quantity r(L) as follows: choose a
starting point on L and write L as a word in the αi and βi by noting intersections with
ai and bi when traversing along L. Set λ+ to be the number of times a β−1 is followed by
an α−1 of the same index also considering the step from the last to the first letter, and
similarly, set ρ+ equal to the number of times an α−1 is followed by a β−1 of the same
index. Denote places where the index changes by ru (rd) if the index increases (decreases)
– including the last position if the index of the last letter is not equal to the index of the
first letter. Now run through the index changes and increase λ+ and ρ+ according to the
following rule:

• increase λ+ by 1 for
– a β−1 followed by ru
– rd followed by an α−1

• increase ρ+ by 1 for
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– an α−1 followed by rd
– a β followed by rd.

Then define
r(L) := ρ+ − λ+.

The results.
Then the following holds:

(a) K is nullhomologous if and only if there is an integral solution a of the equation
l = Qa.

(a’) K is rationally nullhomologous in the manifold if and only if there is a rational
solution a of the equation l = Qa.

(b1) If K is (rationally) nullhomologous, the (rational) Thurston–Bennequin invariant
of K is

tb(K) =−
g+h∑
k=1

(
(K • ak)2 + (K • ak)(K • bk) + (K • bk)2

)
−

2g+h∑
j=1

aj lj −
l∑

j=1

a2g+h+jnj l2g+h+j .

(b2) If K is (rationally) nullhomologous, the (rational) rotation number with respect
to some special Seifert surface S of K is

rot(K,S) = r(K)−
l∑

j=1

a2g+h+jnjr(Tj).

(b3) Denote by K± the positive (resp. negative) transverse push-off of a (rationally)
nullhomologous Legendrian K. Then its (rational) self-linking number with re-
spect to the Seifert surface S from (b2) is

sl(K±, S) = tb(K)∓ rot(K,S).

(c) The Poincaré-dual of the Euler class is given by

PD
(
e(ξ)

)
=

l∑
i=1

nir(Ti)µTi ∈ H1(M).

The first homology group H1(M) of M is generated by the meridians µ of the
αi, βi and Ti and the relations are given by the generalized linking matrix Qµ = 0.

(d) The Euler class e(ξ) is torsion if and only if there exists a rational solution b of
Qb = r with ri = 0 for i = 1, . . . , 2g + h and r2g+h+i = r(Ti) for i = 1, . . . , l. In
this case, the d3-invariant of ξ computes as

d3(ξ) = g +
h

2
+

1

4

(
l∑

i=1

nib2g+h+ir(Ti)− (3− ni) signi

)
− 3

4
σ(Q)− 1

2
,
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where signi denotes the sign of the power of the Dehn twist T±ni
i .

Remark 6.2. In the algorithm above, we implicitly assumed that the knot K sits on the
page with a higher level than the monodromy curves. As described in Section 5, K could
also be assumed to sit on the lowest level, which would change the formulas defining the
vector l. Note that in general, if e(ξ) ̸= 0, the resulting rotation number might differ, as
it is computed with respect to a different class of Seifert surface. However, if the open
book is planar or e(ξ) = 0, we get the same values for both cases.

Remark 6.3. In the planar case, the formulas simplify to

lj = −(K • bj), for j = 1, . . . , h,

lh+j = −
h∑

k=1

(K • bk)(Tj • bk), for j = 1, . . . , l,

Qi,j = 0, for i, j = 1, . . . , h,

Qh+i,h+i = ∓1− ni

h∑
k=1

(Ti • bk)2, for i = 1, . . . , l,

Qh+i,j = −(Ti • bj), for i = 1, . . . , l, j = 1, . . . , h,

Qi,h+j = −nj(Tj • bi), for i = 1, . . . , h, j = 1, . . . , l,

Qh+i,h+j = −nj

h∑
k=1

(Ti • bk)(Tj • bk), for i ̸= j, i, j = 1, . . . , l.

If furthermore all ni = 1, we have that

Q =

(
Q1 Q2

Q3 Q4

)
with Q1 = 0h×h the zero (h× h)-matrix,

Q2 = Qt
3 = −

(
Tj • bi

)
i=1,...,h; j=1,...,l

and
Q4 = Q3Q2 ∓ diag

(
sign(T1), . . . , sign(Tl)

)
.

Example 6.4. In this example we want to reconsider the planar open book of (S3, ξst)
discussed in Example 3.3, where we calculated the rotation number to be 2 using Propo-
sition 3.1. If we choose the arc basis as described above, the knot is encoded by the word
β2β4β3. This yields λ+ = 0 and ρ+ = 2, i.e. rot = 2 as expected.

Note that if we choose a different arc basis, e.g. such that the word is β2β3β4, then
the formula does not give the desired result, as the knot would be represented by a
different word. In fact, the word β2β3β4 does not even encode a simple closed curve on
the embedded page.
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β1
β4

L

β2

T1

T2

T3

T4

b1

b2 b3

b4

β3

Figure 7. The open book (Σ, ϕ = T+1
3 ◦ T+1

2 ◦ T+1
1 ) of (S3, ξst).

Example 6.5. Consider the open book (Σ, ϕ = T+1
3 ◦T+1

2 ◦T+1
1 ) and knot L as specified

in Figure 7. This is an example of a non-destabilisable planar open book of (S3, ξst) taken
from [9].

By the formulas to compute rot in the special planar case, it follows directly that

r = (0, 0, 0, 0, 2, 1, 1, 0)t

and r(L) = 1.
Using the simplified formulas for planar open books given in Remark 6.3, we obtain

l = (0,−1, 0,−1,−1, 0,−1,−1)t

and

Q2 = −


1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 1

 .

As the manifold is S3, it follows that Q is invertible and thus the equation l = Qa admits
a unique solution, which is easily computed to be

a = (2,−2,−1,−1, 1,−1, 0, 1)t
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(in particular, the calculation shows that L is nullhomologous). The Thurston–Bennequin
invariant of L then computes to be

tb(L) = −
4∑

k=1

(L • bk)2 − ⟨a, l⟩ = −3

and the rotation number is
rot(L) = r(L)− ⟨a, r⟩ = 0.

The self-linking number of both the positive and the negative transverse push-off of L is
−3.

Since Q is invertible, we have H1 = 0. I.e. the Poincaré dual to the Euler class of the
contact structure ξ vanishes. As expected, our formula then returns

d3(ξ) = −1

2
.
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