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Comparing star surgery to rational blow-down

Laura Starkston

Abstract. We compare the star surgery operations introduced in [KS] to the general-
ized rational blow-down. We show that star surgery shares the properties that make
rational blow-down useful for constructions of small exotic symplectic 4-manifolds.

Then we show that star surgery operations provide a strictly more general class of op-
erations by proving that there is an infinite family of star surgeries which are inequiv-
alent to any sequence of generalized symplectic rational blow-downs. This answers a
question posed to the author by Özbağcı. It also demonstrates that the monodromy

substitutions coming from star surgery operations yield relations in planar mapping
class monoids which cannot be positively generated by the relations determined in
[EMV11] which come from the generalized rational blow-downs.

1. Introduction

The rational blow-down operation on 4-manifolds was first defined by Fintushel and
Stern [FS97], generalized by Park [Par05] and Stipsicz, Szabó, and Wahl [SSW08], and
shown to be symplectic by Symington [Sym98, Sym01]. A rational blow-down cuts out a
neighborhood of spheres intersecting in a particular way and glues in a rational homology
ball along the common boundary. More general operations, called star surgery, were
introduced by Karakurt and the author in [KS]. These operations similarly cut out a
convex neighborhood of spheres intersecting according to a star shaped graph, but the
piece which is glued in can be any convex symplectic filling of the corresponding contact
manifold, and need not be a rational homology ball. This allows for a much larger range
of operations. The effect on the Seiberg-Witten invariants is understood and similar for
the rational blow-down and the more general star surgery operations, and both can be
used to construct symplectic manifolds with exotic smooth structures (see for example
[Par05, SS05, Mic07, KS]). The rational blow-down was particularly useful in constructing
examples with small Euler characteristic because it kills off many generators of second
homology. We prove here that this is generally true of all star surgery operations.

Theorem 1.1. Every nontrivial symplectic star surgery reduces the Euler characteristic
and second Betti number of the manifold it is applied to.

While the star surgery operations allow for surgeries on much more general configu-
rations of surfaces, it is not obvious whether such operations are equivalent to sequences
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of previously understood rational blow-downs (the configurations to be rationally blown-
down may not be visible from the initial plumbing). In fact, for linear plumbings, whose

boundaries are lens spaces, Bhupal and Özbağcı [BO] showed that all of the minimal con-
vex fillings of these canonical contact lens spaces can be obtained from the plumbing via
a sequence of the symplectic rational blow-downs of Fintushel-Stern and Park. Thus any
symplectic surgery operation defined using linear plumbings is equivalent to a sequence of
rational blow-downs. In light of these results, Özbağcı asked the author whether the same
was true for star surgeries. While some of the star surgery operations can be decomposed
into sequences of rational blow-downs (see [KS] for examples), we show here that this is
not the case in general.

Theorem 1.2. There is an infinite family of symplectic star surgeries for which each
operation is inequivalent to any sequence of generalized symplectic rational blow-downs.

The inequivalence here should be understood as follows. A star surgery operation re-
places one plumbing symplectic filling P with another symplectic filling L. This surgery
operation is inequivalent to a sequence of symplectic rational blow-downs if it is impos-
sible to perform a sequence of symplectic rational blow-downs to P to reach a filling
symplectomorphic to L. In fact, we show that it is not possible to perform a sequence
of symplectic rational blow-downs to P to reach a filling homeomorphic to L (or even a
symplectic filling with the same Euler characteristic as L) for the infinite family referenced
in the theorem.

This result implies that star surgery could potentially be used to construct manifolds
inaccessible to rational blow-down techniques. However, it is unknown whether or not the
closed manifolds obtained from star surgery in [KS] are diffeomorphic to previous exotic
examples constructed through rational blowdown because the Seiberg-Witten invariants
agree in such examples. The relationship between exotic manifolds which have the same
known invariants but are obtained from distinct constructions, is quite interesting but
very mysterious. The star surgery adds to the set of examples on which this relationship
can be studied.

As with the rational blow-down and its generalizations, each star surgery operation
can be interpreted as a monodromy substitution: a pair of factorizations of a certain
diffeomorphism of a planar surface into products of positive Dehn twists. Each such
monodromy substitution is a relation in the planar mapping class monoid. While a
complete presentation for the planar mapping class groups is well understood, we are
much further from understanding a complete set of relations for the planar mapping class
monoids. The monodromy substitutions corresponding to the generalized rational blow-
down operations were found in [EMV11]. The particular monodromy substitutions for
the star surgery operations in Theorem 1.2 are related to certain line arrangements as is
seen in Section 5. These mapping class monoid relations agree with the corresponding
relations from [Hir12] though the interpretation here is in terms of symplectic fillings
while in [Hir12] the interpretation is in terms of braid monodromy. The two perspectives
are closely related, but the advantage of the symplectic filling interpretation is that we are
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able to not only discover such relations but also, to some extent, classify these relations
and their dependencies on each other. Theorem 1.2 can be interpreted as saying that this
infinite family of relations in the planar mapping class monoid are not generated by the
relations coming from the generalized rational blow-down monodromies.

2. Background: classifying symplectic fillings

We briefly describe the strategy used in [Sta15] to classify symplectic fillings of Seifert
fibered spaces with a canonical contact structure. We restrict to the Seifert fibered spaces
which arise as the boundary of a star-shaped plumbing of spheres with k arms, such that
the Euler number on the central sphere satisfied the inequality e0 ≤ −k− 1 and all other
Euler numbers are ≤ −2. We call such a star-shaped plumbing dually positive. These
plumbings have convex symplectic structures by a result of Gay and Stipsicz [GS09].
Denote the induced contact boundary by (Y, ξ). Then (Y, ξ) has a concave cap given by
another star-shaped plumbing of spheres, where here the central sphere has Euler number
+1 as in Figure 1. This cap is the plumbing specified by the “dual graph” described by
Stipsicz, Szabó, and Wahl in [SSW08]. (The construction is described in the proof of
Theorem 3.1 and further details can also be found in Section 2.1 of [Sta15].)

We will refer to the star-shaped plumbing with convex boundary (whose central sphere
has square e0 ≤ −k − 1) as the filling plumbing or convex plumbing and the star-shaped
plumbing with concave boundary (whose central sphere has square +1) as the cap plumb-
ing or concave plumbing. Note that the filling plumbing is the piece which is cut out
during the star surgery. However, the cap plumbing is actually the main object which is
studied in the classification proofs.

We can glue any alternate convex filling to this concave cap plumbing to give a closed
symplectic manifold, which by a classification theorem of McDuff [McD90], is necessarily a
blow-up of CP2 (because it contains a symplectic sphere of self-intersection 1). Therefore

all convex fillings of (Y, ξ) embed into CP2 #N CP2 (for some N) as the complement of
the cap. The strategy is to classify all symplectic embeddings of the cap plumbing into
CP2 #N CP2 up to isotopy.

Classifying symplectic embeddings of the cap into CP2 #N CP2 can be split into two
steps. First classify homological embeddings : the induced maps on second homology.
Because the core spheres of this plumbing are symplectic, the adjuction formula and
intersection relations can be used to significantly constrain the possible homological em-
beddings of a given plumbing. The second step is to determine the isotopy classes of
embeddings inducing a given homological embedding. By carefully blowing down J-
holomorphic exceptional spheres, this reduces to classifying symplectic line arrangements
where the combinatorics of the line arrangement is determined by the homological embed-
ding. In many cases, one can prove there is a unique isotopy class for each homological
embedding. After classifying the embeddings one can describe the complementary convex
fillings as Lefschetz fibrations using Kirby calculus.
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Figure 1. Dual graph plumbing corresponding to the concave cap. bji ≥ 2.

3. Euler characteristic and star surgery

A star surgery operation replaces the symplectic filling given by a star-shaped plumb-
ing of spheres, by an alternate symplectic filling of the same contact boundary. Therefore
a star surgery will decrease the Euler characteristic of a manifold precisely when the
Euler characteristic of the alternate symplectic filling is less than that of the plumbing.
Constructions of many symplectic 4-manifolds with small Euler characteristic have his-
torically proven to be more difficult to find than those with large Euler characteristic.
Therefore operations which reduce Euler characteristic and can be used to produce exotic
4-manifolds are of particular interest to 4-manifold topologists. The main goal of this
section is to prove Theorem 1.1 which is an immediate consequence of the following more
precise results.

Theorem 3.1. Let P be a dually-positive star-shaped convex plumbing of spheres inducing
(Y, ξ) on its boundary. Then the P has larger Euler characteristic than any other minimal
convex symplectic filling of (Y, ξ).

We know that all of the symplectic fillings we are considering will embed in a blow-
up of CP2 as the complement of the cap plumbing. Both CP2 #N CP2 and the cap
plumbing are simply connected. Moreover, the plumbings we consider here have Seifert-
fibered boundaries which are rational homology spheres (the dually positive condition
e0 ≤ −k − 1 ensures this). Because the cap plumbing P ′ contains a sphere of positive

square, b+2 (P
′) = b+2 (CP

2 #N CP2) = 1. Therefore by the Mayer-Vietoris sequence we
conclude the following results.

Proposition 3.2. Every convex symplectic filling W of (Y, ξ) as above has b1(W ) = 0
and b+2 (W ) = 0.

In fact, the contact manifolds we consider have planar open books [GM13], so every
convex symplectic filling is deformation equivalent to a Stein domain [Wen10] and thus
have b3 = 0. It follows that the Euler characteristic of the filling determines the rank
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of its second homology. Examples of such fillings have varying fundamental groups. In
examples, we have observed trivial and finite cyclic fundamental groups for fillings which
are distinct from the convex plumbing.

The Euler characteristic of any symplectic filling which arises as the complement of an
embedding of the cap plumbing into CP2 #N CP2 is 2+N−|P ′| where |P ′| is the number
of spheres plumbed together in the cap. To find fillings without exceptional spheres, N
must be the minimal number of distinct exceptional classes appearing with non-zero
coefficient in the homological embedding. This follows from Lemma 4.5 of [Lis08], which
proves that there is a J-holomorphic exceptional sphere disjoint from the cap plumbing
spheres whenever there is an exceptional sphere with algebraic intersection 0 with each
sphere in the cap plumbing. Therefore to search for minimal symplectic fillings with small
Euler characteristic, we want to look for homological embeddings of the cap which use a
small number of exceptional classes relative to the size of the cap plumbing.

There are significant restrictions on the homology classes represented by the images of
the cap plumbing spheres under a symplectic embedding. McDuff’s theorem identifies the
+1 sphere in the cap with the complex projective line, so the image of its homology class
is necessarily h. The adjunction formula and the intersection form on the cap plumbing
imply the following lemma which is proven in [Sta15] Section 2.4.

Let Cj
i be the image in CP2 #N CP2 of the core plumbing sphere in the cap cor-

responding to a vertex in the plumbing graph which lies in the jth arm and is sep-
arated from the central +1 vertex by i edges. We will use the standard basis for
H2(CP

2 #N CP2) = 〈h, e1, · · · , eN 〉 where h denotes the class of the complex projective
line in CP2 and ei for i = 1, · · · , N denote the classes of the exceptional spheres.

Lemma 3.3. The homology class of Cj
1 (intersecting the central sphere) has the form

[

C
j
1

]

= h− e1,jm1
− · · · − e1,jmn1,j+1

.

The homology class of Cj
i for i > 1 (not intersecting the central sphere) has the form
[

C
j
i

]

= ei,jm0
− ei,jm1

− · · · − ei,jmni,j−1
.

The following lemmas easily follow from the intersection relations and Lemma 3.3.

Since 0 = [Cj
1 ] · [C

j′

1 ], the following lemma holds.

Lemma 3.4. For each distinct pair j, j′, there is exactly one ex which appears with

coefficient −1 in both [Cj
1 ] and [Cj′

1 ].

The following lemma follows from using the intersection 1 = [Cj
2 ] · [C

j
1 ].

Lemma 3.5. The class of the exceptional sphere which appears with coefficient +1 in
[Cj

2 ] appears with coefficient −1 in sphere [Cj
1 ] and no other exceptional class appears

with non-zero coefficient in both.

Using the intersection relation 1 = [Cj
i ] · [C

j
i+1

], we conclude the following.
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Lemma 3.6. For i > 1, either the exceptional class with coefficient +1 in [Cj
i ] appears

with coefficient −1 in [Cj
i+1

] or the exceptional class with coefficient +1 in [Cj
i+1

] appears

with coefficient −1 in [Cj
i ], or both. In particular, they do not share the same exceptional

class with +1 coefficient. Furthermore, the exceptional classes which appear with coeffi-
cients −1 in [Cj

i ] are disjoint from those which appear with coefficient −1 in [Cj
i+1

] unless
both conditions in the first sentence are satisfied, in which case they share exactly one
exceptional class with −1 coefficient in common.

Because the intersections between the spheres are non-negative, we may conclude the
following.

Lemma 3.7. If ex appears with coefficient +1 in [Cj
i ] then it does not appear with coef-

ficient +1 in [Cj′

i′ ] for any (i′, j′) 6= (i, j).

Analyzing the possibilities which can lead to [Cj
i ] · [C

j′

i′ ] = 0, leads to the following
statement.

Lemma 3.8. If ex appears with nonzero coefficient in distinct classes [Cj
i ] and [Cj′

i′ ] and
it is not the case that (i, j) = (i′ ± 1, j′) or that i = i′ = 1, then we have one or both of
the following two possibilities:

(1) the exceptional class with coefficient +1 in [Cj
i ] appears with coefficient −1 in

[Cj′

i′ ],

(2) the exceptional class with coefficient +1 in [Cj′

i′ ] appears with coefficient −1 in

[Cj
i ].

If only one of these possibilities holds, then there is exactly one exceptional class which

appears with coefficient −1 in both [Cj
i ] and [Cj′

i′ ]. If both (1) and (2) hold, then there are
exactly two exceptional classes which appear with coefficient −1 in both.

With all of these restrictions on the homology embeddings, the different possibilities
for the Euler characteristics of the corresponding fillings are determined by the varying
ways that exceptional classes appear with non-zero coefficients in the homology classes of
distinct spheres.

Proof of theorem 3.1. We will first describe the homological embedding of the cap plumb-
ing such that its complement is the convex plumbing.

The following process produces a decomposition of a blow-up of CP2 into two star-
shaped plumbings, one the convex filling and the other the concave cap. More details can
be found in [SSW08] or [Sta15, section 2.1]. We will call the corresponding embedding
of the cap the canonical cap embedding and the induced map on homology, the canonical
homological embedding. Start with CP2 #CP2, viewed as a sphere bundle over a sphere.
Keep track of two sections - the 0-section which has square +1 and is a complex projective
line representing the homology class h, and the ∞-section which has square −1 and is an
exceptional sphere representing the homology class e1. Also keep track of −e0 − 1 fiber
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spheres (necessarily of square 0) which represent h − e1. Then blow-up at intersections
between each of the tracked fibers with the ∞-section so that its proper transform has
self-intersection e0. Keep track of the exceptional spheres and all proper transforms.
Continue blowing up at points which lie on the intersection of an exceptional (−1)-sphere
with one of the other spheres being tracked (there are two points on each exceptional
sphere to choose from and the varying choices yield varying dual pairs of star-shaped
plumbings). After blowing up we add the new exceptional spheres into the set of spheres
we track along with the proper transforms of the spheres we were tracking before. The
blow-ups create singular fibers which can each be cut along the most recently introduced
exceptional sphere so that on one side we have the arms of the convex plumbing emanating
from the proper transform of the ∞-section, and on the other side we have the arms of
the cap plumbing emanating from the 0-section sphere of square +1.

The homology classes of the cap spheres in this construction can be easily computed.
The spheres adjacent to the central +1 sphere represent the class h − e1 − ei1 − · · · −
ein . They all share e1 with coefficient −1, but the other ex’s that appear with nonzero
coefficient are all distinct. Subsequent spheres in the arms are the proper transforms of
the exceptional sphere which intersects the previous sphere in that arm. Therefore, the
spheres in the jth arm represent homology classes as follows.

h− e1 − e
1,j
1 − · · · − e1,jn1,j

e1,jn1,j
− e

2,j
1 − · · · − e2,jn2,j

e2,jn2,j
− e

3,j
1 − · · · − e3,jn3,j

...

em−1,j
nm−1,j

− e
m,j
1 − · · · − em,j

nm,j

Here all ei,jx are exceptional classes distinct from each other and from e1. There are no
exceptional sphere classes which appear with nonzero coefficient in more than one arm
because the blow-ups are all done in distinct singular fibers which each correspond to
distinct arms. The only exceptional classes besides e1 that appear with nonzero coefficient
in two different spheres are in adjacent spheres, and appear with coefficient −1 in the
inner-more sphere and with coefficient +1 in the outer-more sphere.

Now we will show that any other homological embedding of the cap plumbing uses
strictly fewer distinct exceptional classes than the canonical homological embedding.

First we focus on the homology classes of the spheres adjacent to the center Cj
1 (we will

drop the brackets indicating homology class for readability). By Lemma 3.4, each pair
of spheres intersecting the central +1 sphere in the cap, must have exactly one shared
ei appearing with −1 coefficient in both. In the canonical embedding, they all share
the same class, e1. In an embedding where the Cj

1 did not all share the same class,

there would necessarily be at least one sphere Cj0
1 in which two exceptional classes ex

and ey appear with −1 coefficient, where ex appears with −1 coefficient in Cj1
1 , · · · , C

jn
1

and ey appears with −1 coefficients in a disjoint set of spheres C
jn+1

1 , · · · , Cjm
1 . There
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is necessarily a third exceptional class ez which appears with −1 coefficient in C
j1
1 and

C
jn+1

1 . Now compare this to the homology embedding where Cj0
1 , C

j1
1 , · · · , C

jm
1 all share

the same ez with coefficient −1 so ex and ey are eliminated. Then because the squares of

the homology classes of Cj0
1 , C

j1
1 , · · · , C

jn
1 , C

jn+1

1 , · · · , Cjm
1 are fixed, there must be new

distinct exceptional classes ea, eb1 , · · · , ebm ; with one appearing with coefficient −1 in
each of these classes. Therefore decreasing the number of distinct ei’s which are shared
between the spheres adjacent to the central vertex, increases the total number of distinct
exceptional classes appearing with nonzero coefficients in the embedding. (We eliminated
two exceptional class at the cost of adding 1 +m ≥ 3 new ones.)

Next we consider classes of the spheres Cj
i for i > 1. In the canonical cap embedding,

the only exceptional classes which appear with non-zero coefficient in more than one class
other than the Cj

1 occurs between consecutive spheres within an arm where the class has

coefficient −1 in Cj
i and +1 in Cj

i+1
. By Lemma 3.6, there is always an exceptional class

appearing with non-zero coefficient in both consecutive spheres in a given arm, but it is
possible that it appears with coefficient +1 in Cj

i and −1 in Cj
i+1

. We claim that in this
scenario there is necessarily some exceptional class which appears with non-zero coefficient
in two classes of spheres which are not consecutive. Let i0 be the largest value less than i
for which the exceptional class with coefficient 1 in Cj

i0+1
appears with coefficient −1 in

C
j
i0
. By Lemma 3.5, i0 is well-defined. Then for all i0 < p ≤ i there is an exceptional class

ekp
with coefficient 1 in Cj

p and coefficient −1 in Cj
p+1. Therefore eki0+1

has coefficient

−1 in Ci0 and Cj
i0+2

, proving the claim.
We conclude using Lemma 3.8 and the previous paragraph that any homological em-

bedding that differs from the canonical embedding has a larger number of exceptional
classes which appear more than once with non-zero coefficient. Because the classes of the
cap spheres have the restricted form of Lemma 3.3 and the squares of those homology
classes are fixed, the total number of exceptional classes which appear with non-zero coef-
ficient (counted with multiplicity) is fixed. Thus the total number of distinct exceptional
classes is maximized when the number of exceptional classes appearing with non-zero
coefficient more than once is minimized. This implies that the canonical homological em-
bedding has the maximal number of distinct exceptional classes appearing with non-zero
coefficient. Therefore the convex plumbing has the maximal Euler characteristic of any
minimal symplectic filling of its contact boundary. To show that it is the unique filling
realizing this maximum, we must verify that there is a unique isotopy class of embeddings
of the cap plumbing inducing the canonical homological embedding. This follows from
the arguments of [Sta15] Lemma 2.7 and 2.8 which we discuss in a more general form in
the following section. �

4. Unique isotopy classes

We discuss the isotopy classes of embeddings of the cap plumbing within a fixed ho-
mological embedding. While similar statements can be found in [Sta15] Section 2.5, here
we prove that there is a unique non-empty isotopy class for a larger class of homological
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embeddings (which is needed for the infinite family in the next section), and we refine
the argument so that the isotopy equivalence is through symplectic configurations instead
of only smooth ones. This allows us to conclude classification results of minimal fillings
up to symplectic deformation equivalence and symplectomorphism instead of only up to
diffeomorphism.

Suppose we have an embedding of the cap plumbing P ′ into CP2 #N CP2. Choose an
almost complex structure J where the core spheres of the cap plumbing are J-holomorphic,
and blow down J-holomorphic exceptional spheres until reaching CP2. Then the homol-
ogy classes of the spheres determine their images in CP2 after blowing down. In particular,
all of the spheres disappear except for those whose homology classes have non-zero coeffi-
cient for h ∈ H2(CP

2). Because of Lemma 3.3, this means we are left with the central +1

sphere, together with the images of {Cj
1}

d
j=1 under blowing-down, each of which becomes a

symplectic sphere Cj
1 in the class of the line h. The J-holomorphic exceptional spheres are

disjoint from the central +1 sphere so its double-point intersections with C1
1 , · · · , C

d
1 are

unaffected by blowing down, but the images any pair of the Cj
1 in CP2 intersect transver-

sally in a single point, and collections Cj1
1 , · · · , C

jp
1 intersect at a common intersection

point precisely when the homology classes [Cj1
1 ], · · · , [C

jp
1 ] all shared the same exceptional

class with coefficient −1 in the embedding into CP2 #N CP2. Thus after blowing-down,
we are left with a symplectic line arrangement (a collection of symplectic spheres in CP2

each in the homology class of the line which intersect pairwise once, but not necessarily
generically). The combinatorics describing the point-line incidences of the symplectic line

arrangement is determined by the homological embedding of the Cj
1 (specifically which

classes had shared ei). Note that in the plumbing embedding, because all the [Cj
1 ] share

the same exceptional class, after blowing down they will represent symplectic lines which
all intersect at a single point. (The central sphere will represent a symplectic line which
intersects the others generically and all other spheres disappear under blowing down.)
This is the simplest case which is covered by the isotopy classifications in [Sta15] and the
refinements below.

We say that an intersection point in a symplectic line arrangement is amulti-intersection
if there are ≥ 3 symplectic lines passing through it. Note that for any symplectic line
arrangement there is an almost complex structure tamed by the symplectic form making
all the lines J-holomorphic because all the symplectic spheres intersect each other posi-
tively. (Standard arguments hold for configurations of symplectic surfaces which intersect
positively and generically, and this can be extended to the present case by blowing up at
the multi-intersections and then choosing J and blowing back down.) We show that if
there are no more than two multi-intersections on each line, there is a unique non-empty
isotopy class of symplectic line arrangements.

Proposition 4.1. Suppose C0, C1, · · · , Cd form a symplectic line arrangement which is
J0-holomorphic for some J0 tamed by ωstd such that no Cj contains more than two multi-
intersection points. Then the spheres C0, C1, · · · , Cd can be isotoped to J1-holomorphic
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lines for any J1 tamed by ωstd through symplectic spheres such that the combinatorial
intersection data of the arrangement remains unchanged throughout the isotopy.

In particular letting J1 be the standard complex structure, any symplectic line arrange-
ment where each line contains at most two multi-intersections is isotopic to a complex
line arrangement.

Proof. Because J0 and J1 are both tamed by ωstd, and the space of such J is contractible
and thus connected, there exists an interpolating family {Jt}. A theorem of Gromov
[Gro85] states that for any J tamed by the standard symplectic structure on CP2, any
two points v1 6= v2 ∈ CP2 lie on a unique non-singular rational (i.e. diffeomorphic to S2)
J-holomorphic curve homologous to CP1 ⊂ CP2. By fixing two points on each sphere
and considering the family of Jt-holomorphic spheres through those two points, we get
an isotopy C0

t , C
1
t , · · · , C

d
t from the original embedded J-holomorphic spheres to complex

projective lines. During this isotopy we fix exactly two points on each sphere. If at a
multi-intersection point, we choose to fix that point on every sphere passing through it,
then that intersection is preserved (though potentially other spheres may pass through
that point during the isotopy). Using the hypothesis, we will fix the multi-intersection
points in this way. Thus we can choose the isotopy so that at worst the intersection
configuration becomes more degenerate. We will now discuss how to modify this isotopy
to one which preserves the intersection configuration throughout.

The spheres which have two fixed multi-intersection points are rigidly determined by
Jt and the placement of those multi-intersection points. We begin the isotopy by making
small perturbations of the multi-intersection points to avoid degenerations of the intersec-
tions between these rigid spheres. The first phenomenon which we need to avoid, is that
three of the multi-intersection points could become Jt-collinear for some t > 0, meaning
that they all lie on the same Jt-holomorphic line. The second phenomenon we need to
avoid is a generic intersection between two of the rigid spheres could pass onto a third
rigid sphere. Choose an ordering of the multi-intersection points, p1, p2, p3, · · · , pz. Leav-
ing p1 and p2 fixed, consider the union of the Jt-holomorphic lines through p1 and p2 over
all 0 ≤ t ≤ 1. This subset of CP2 will have at least codimension one. Therefore, if p3 lies
in this subset, it can be perturbed slightly to p′3 so that it no longer is Jt-collinear with
p1 and p2 for any t. Define an isotopy of the curves C0, C1, · · · , Cd by choosing a path
γ(s) from p3 to p′3. For each sphere Cj passing through p3, isotope C

j by defining Cj
s as

the unique J0-holomorphic sphere through the other chosen fixed point which is not p3
and γ(s). For each sphere that does not pass through p3, fix it throughout this isotopy.
By choosing the perturbation p′3 sufficiently close to p3, we can ensure that the incidences
of C0, C1, · · · , Cd are unchanged during this small isotopy. Next consider the space of Jt
lines through p1 and p2, p2 and p3, and p1 and p3 for all t. Again this subspace has at
least codimension one, so p4 can be perturbed to avoid this subspace and a corresponding
isotopy of the Cj can be defined to preserve the incidences. Now some additional points

of interest appear. Let qi,j,k,lt denote the intersection between the Jt line through pi and
pj and the Jt line through pk and pl. We proceed to isotope pN for N ≥ 5 as before,
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except we want to also avoid an additional codimension one subspace to ensure that lines

through the various pa avoid the qi,j,k,lt . The space of points which lie on a Jt line through

one of the qi,j,k,lt and one pa for a < N and some t ∈ [0, 1] has at least codimension one,
so pN can be perturbed an arbitrarily small amount to avoid it.

Now, after any needed isotopies in the previous step, append the isotopy C0
t , C

1
t , · · · , C

d
t

defined by fixing two points on each of (the newly isotoped) C0, C1, · · · , Cd, including all
of the multi-intersection points and considering the unique Jt-holomorphic line through

those two points. Suppose Cj0
t passes through the intersection of spheres Cj1

t , · · · , C
jp
t for

t ∈ T ⊂ I (p ≥ 2) when it should not according to the original intersection configuration.

Parameterize a neighborhood of this intersection point on Cj1
t by a small disk centered on

the intersection point by η(r, θ). By the previous paragraph Cj0
0 passes through at most

one multi-intersection. Let p denote a point fixed on Cj0 away from C
j1
t . Define Cj0

t,r,θ

to be the unique Jt-holomorphic sphere through the point η(r, θ) and p. By choosing ε
sufficiently small, we can ensure that no new degeneracies of the configuration are intro-
duced away from the degeneracy we are focusing on. For each fixed t and corresponding
almost complex structure Jt, there is a unique point on Cj1

t which we are trying to make

C
j0
t avoid: its intersection with Cj2

t , · · · , C
jn
t . Thus the degenerate configurations occur

in a codimension two subset of the cylinder (t, r, θ), so we can choose a path which avoids
this.

Morally, we can perturb the line in a real 2-dimensional space (because we are only try-
ing to fix at most one multi-intersection point on the complex line) and the degeneracies
we want to avoid are 0-dimensional, so we can find a 1-parameter family of configurations
which avoid these degeneracies. We repeat this for other spheres contributing to degen-
eracies and eventually find an isotopy from the J0-holomorphic configuration we started
with (at r = t = 0) to a Jstd-holomorphic (complex) configuration (at t = 1).

�

Finally, we show there is a unique isotopy class of J-holomorphic configurations in
given combinatorial arrangements of the types covered by Proposition 4.1.

Proposition 4.2. Fix an almost complex structure J on CP2 tamed by the standard
symplectic structure. Then the space of J-holomorphic lines with a fixed incidence con-
figuration with the property that no line contains more than two multi-intersection points
is path-connected and non-empty.

Proof. We use the fact that there is a unique J-holomorphic line through any two points
[Gro85]. The configuration space of possibilities for the multi-intersection points p1, · · · , pz
is parameterized by the complement of a co-dimension ≥ 2 subset in (CP2)×z (as in the
last part of the proof of the previous lemma but without the additional t parameter). For
fixed p1, · · · , pz; the lines through two of the pi are determined so the space of possibilities
for these lines is a single point. The space of possibilities for J lines passing through one
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(a) Filling graph

f f
(b) Cap graph

Figure 2. Graphs Γa,b for the convex plumbing and DΓa,b for the cap
plumbing.

(respectively none) of the pi is non-empty, path-connected and real 2-dimensional (re-
spectively real 4-dimensional), and the more degenerate configurations have co-dimension
at least 2. �

5. An infinite family of star surgeries inequivalent to any sequence

of rational blowdowns

In this section, we will show that the plumbings according to the graphs in Figure 2a
each have a star-surgery operation which for infinitely many values of a, b we can show is
not equivalent to any sequence of symplectic rational blow-downs (where here symplectic
rational blow-down includes Fintushel and Stern’s original family, Park’s generalization,
as well as the further negative definite examples classified in [SSW08] and [BS11]). This
is in contrast to the results of [BO] which show that all fillings of lens spaces are obtained
from a linear plumbing by a sequence of rational blow-downs. The following is a more
precise version of Theorem 1.2.

Theorem 5.1. The convex boundary (Y, ξcan) of the plumbing of spheres Pa,b, plumbed
according to the graph Γa,b in Figure 2a, has exactly two minimal strong symplectic fillings.
One is the plumbing itself and the other has Euler characteristic ab− a− b+ 2. If ab+ 1
is not divisible by a + b, then the filling of Euler characteristic ab − a − b + 1 cannot be
obtained from the plumbing by any sequence of symplectic rational blow-downs.
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Note that ab + 1 is divisible by a + b if and only if b2 − 1 is divisible by a + b since
ab+ 1 = (a+ b)b− (b2 − 1). In particular, if a > b2 − b− 1 the condition holds, so there
are infinitely many pairs (a, b) which satisfy this condition.

Proof. The graph for the cap plumbing is given in Figure 2b. Let C0 denote the cor-
responding central +1 sphere, C1, · · · , Ca denote the a (−b)-spheres, Ca+1 the unique
(−1)-sphere and Ca+2, · · · , Ca+b+1 the b (−a)-spheres. The existence of the (−1)-sphere
in the cap strongly restricts the homological embedding possibilities. There are only two
possible homological embeddings satisfying Lemmas 3.3 and 3.4. One is the canonical
homological embedding for the complement of the convex plumbing. The other is in-
duced by the proper transform of the blow-up of the line arrangement in Figure 3 given
as follows:

[C0] = h

[C1] = h− e1 − e1,1 − · · · − e1,b

...

[Ca] = h− e1 − ea,1 − · · · − ea,b

[Ca+1] = h− e1 − e2

[Ca+2] = h− e2 − e1,1 − · · · − ea,1

...

[Ca+b+1] = h− e2 − e1,b − · · · − ea,b

Because there are only two exceptional classes which appear with non-zero coefficient in
more than two sphere classes, Propositions 4.1 and 4.2 imply there is at most one isotopy
class of symplectic embeddings for each of these two homological embeddings. Therefore
there are at most two symplectic deformation classes of convex symplectic fillings of the
canonical contact boundary of this plumbing. The above homological embedding involves
ab + 2 exceptional classes, so the Euler characteristic of the complement to such an
embedding is ab− a− b+ 2

A smooth embedding of the cap plumbing realizing this homological embedding into
CP2 #(ab + 2)CP2 is given in Figure 5a, along with a diagram for the complement of
this embedding. This handlebody diagram naturally supports a Lefschetz fibration whose
fibers are a + b + 1 holed disks and whose vanishing cycles are given by the attaching
curves for the −1 framed 2-handles (see conventions below). The boundary open book
decomposition can be shown to agree with the boundary open book decomposition of the
canonical Lefschetz fibration for the plumbing graph of Figure 2a by Lemma 5.2.
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Figure 3. A line configuration with a red lines intersecting at a point
p, b blue lines intersecting at a point q, one green line passing through
both p and q and one generic black line. After blowing up at the the
intersections between the blue, red, and green lines we get a homological
embedding of the DΓa,b plumbing where the proper transforms of the red
lines become C1, · · · , Ca, the green becomes Ca+1 and the blue become
Ca+2, · · · , Ca+b+1.

5.1. Conventions on monodromy factorizations and Lefschetz fibrations

Let φc denote a positive Dehn twist around c. The product φc1φc2 · · ·φcn means first
Dehn twist along c1, then c2, and so on until finally along cn. When the fiber is a disk
with holes, we can place the holes along a circle concentric with the bounday of the
disk. Labeling the holes {1, · · · ,m} counterclockwise, we use the notation φi1,··· ,ik for
i1, · · · , ik ∈ {1, · · · ,m} to indicate a positive Dehn twist about a curve which convexly
contains the holes i1, · · · , ik.

Planar Lefschetz fibrations have a natural handle decomposition where the holes are
represented by dotted circles forming a trivial braid corresponding to 1-handles and the
vanishing cycles correspond to 2-handles. We view the holed-disk fibers as orthogonal
to the dotted circles, oriented so that the outward normal defining orientation points
downward. Then the monodromy factorization φc1 · · ·φcn corresponds to the Lefschetz
fibration where the vanishing cycle c1 appears at the top and cn at the bottom (though
these vanishing cycles lie on the upside-down disk). To draw the handlebody, we will
isotope the holes on the disk so that they all lie on the bottom half of the disk along a
circle concentric to the boundary. An example, using the top to bottom convention where
the outward normal to the disk points downward, is in Figure 4.

If A, B, and C are collections of holes ordered counter-clockwise on the disk, the
lantern relation is

φA∪B∪CφAφBφC = φA∪BφA∪CφB∪C .
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Figure 4. The Lefschetz fibration corresponding to the monodromy fac-
torization φ1,3φ2,5φ4,7 = φc1φc2φc3 .

Similarly for B0, B1, · · · , Bp ordered counterclockwise, the daisy relation (defined in
[EMV11]) is

φB0∪B1∪···∪Bp
φ
p−1

B0
φB1

· · ·φBp
= φB0∪B1

φB0∪B2
· · ·φB0∪Bp

φB1∪···∪Bp
.

Finally, sequences of daisy relations yield the generalized lantern relation:

φ1,··· ,kφ
k−2
1 · · ·φk−2

k = φ1,2φ1,3 · · ·φ1,kφ2,3 · · ·φ2,k · · ·φk−2,k−1φk−2,kφk−1,k

Lemma 5.2. Label the holes of the m+1+n-holed disk A1, · · · , Am, B, and C1, · · · , Cn

counterclockwise. The following two products of positive Dehn twists are equal in the
mapping class group of Σ0,a+1+b

Fm,n = φA1,··· ,Am,B,C1,··· ,Cn
φnA1

· · ·φnAm
φBφ

m
C1

· · ·φmCn
,

Gm,n = φA1,··· ,Am,B(φA1C1
· · ·φA1Cn

) · · · (φAmC1
· · ·φAmCn

)φB,C1,··· ,Cn
.

Proof. Applying the generalized lantern relation to the factorization for Fm,n, we get a
new factorization (not positive) given by

φ
−m+1

A1
· · ·φ

−m+1

Am
φ
−m−n+2

B
φ
−n+1

C1
· · ·φ

−n+1

Cn
(φA1,A2

· · ·φA1,Am
)φA1,B(φA1,C1

, · · ·φA1,Cn
)

(φA2,A3
· · ·φA2,Am

)φA2,B(φA2,C1
, · · ·φA2,Cn

) · · · (φAm−1,Am
)φAm−1,B(φAm−1,C1

, · · ·φAm−1,Cn
)

φAm,B(φAm,C1
· · ·φAm,Cn

)(φB,C1
· · ·φB,Cn

)(φC1,C2
· · ·φC1,Cn

) · · · (φCn−2Cn−1
φCn−2,Cn

)φCn−1,Cn
.

On the other hand, applying the generalized lantern relation twice on the factorization
for Gm,n to split the twists φA1,··· ,Am,B and φB,C1,··· ,Cn

shows that ψm,n is equal to the
product

φ
−m+1

A1
· · ·φ

−m+1

Am
φ
−m+1

B
(φA1,A2

· · ·φA1,Am
)φA1,B(φA2,A3

· · ·φA2,Am
)φA2,B · · · (φAm−1,Am

)φAm−1,B

φAm,B(φA1,C1
· · ·φA1,Cn

)(φA2,C1
· · ·φA2,Cn

) · · · (φAm−1,C1
· · ·φAm−1,Cn

)(φAm,C1
· · ·φAm,Cn

)
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(a) Embedding of cap

plumbing.

(b) Complement of cap

plumbing.

(c) Lefschetz fibration for
complement.

Figure 5. The leftmost diagram represents a handlebody decomposi-
tion for CP2 #(ab + 2)CP2 with (a + b + 1) 3-handles cancelling the
(a+ b+1) 2-handles whose attaching circles are the strands of the braid.
The cores of the 2-handles attached along the braid strands and the +1
framed circle, together with their disk Seifert surfaces form spheres in
the cap plumbing. The center diagram is a handlebody for the comple-
ment of these embedded spheres (with no 3- or 4-handles) obtained by
removing the braid 2-handles and the 0-handle, turning the resulting rel-
ative handlebody upsidedown, and simplifying the diagram by blowing
down surgery curves on the lower boundary. Note that in this process
the (a+ b+1) 3-handles become the (a+ b+1) 1-handles represented by
dotted circles. The final diagram is an isotoped version of the center one
which makes the Lefschetz fibration structure apparent. It is obtained
from the previous diagram by rotating the plane of projection.
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φ
−n+1

B
φ
−n+1

C1
· · ·φ

−n+1

Cn
(φB,C1

· · ·φB,Cn
)(φC1,C2

· · ·φC1,Cn
) · · · (φCn−2,Cn−1

φCn−2,Cn
)φCn−1,Cn

.

Comparing these two factorizations, we see that they differ only by commuting Dehn
twists about curves which are disjoint. Specifically, all the twists about boundary par-
allel curves commute with anything, and the products of the form (φAi,C1

· · ·φAi,Cn
)

commute with Dehn twists about curves convexly enclosing any collection of the holes
{Ai+1, · · · , Am, B}. �

Remark 5.3. Notice that the intermediate factorizations between Fm,n and Gm,n involve
negative Dehn twists. Therefore these intermediate factorizations do not have geometric
interpretations as symplectic fillings. The classification indicates that in fact there are no
intermediate positive factorizations with such geometric interpretations.

We conclude that the plumbing Pa,b and the filling La,b described by the Lefschetz
fibration of Figure 5c provide a complete list of symplectic fillings of their common contact
boundary. Next we show that it is not possible to obtain La,b from Pa,b from any sequence
of sympletic rational blow-downs when a+ b does not divide ab+ 1.

Any sequence of symplectic rational blow-downs on the plumbing Pa,b would produce
a sequence of minimal symplectic fillings of the same contact boundary (since the rational
blow-downs are symplectic operations that are performed on the interior). Since there
are only two minimal symplectic fillings, the only way to obtain La,b from Pa,b by a
sequence of rational blow-downs is by a single rational blow-down. The change in the
Euler characteristic of a manifold before and after a rational blow-down is precisely the
number of spheres in the rational blow-down graph. The Euler characteristic of Pa,b

is a(b − 1) + b(a − 1) + 1 + 1 = 2ab − a − b + 2, and the Euler characteristic La,b is
ab − a − b + 2. Therefore it suffices to show that there is no plumbing with ab vertices
which can be rationally blown-down and which embeds into Pa,b.

The classification of star-shaped plumbings which can be rationally blown-down was
completed by Bhupal and Stipsicz [BS11], and it was shown in [PSS] that no other plumb-
ings admit rational disk smoothings. The graphs which can be rationally blown-down are
either linear or star-shaped with three or four arms. Using the list of Bhupal and Stipsicz,
we observe that in each three or four armed graph which can be rationally blown-down,
there is at least one sphere with self-intersection number (−3) or (−4), except one fam-
ily which contains 5 + q spheres, and one of them has self-intersection (−6). The linear
graphs which can be rationally blown include the examples of Fintushel and Stern and the
more general examples of Park, where the continued fraction expansion of the weights is

− p2

pq−1
for gcd(p, q) = 1. There is a recursive procedure to build all these linear plumbings

described in [SSW08] Section 4, which we review here.
Starting with a graph with one vertex labeled (−4), one vertex labeled (−1), and two

edges between them; we choose one of the two edges emanating from the (−1) vertex and
blow-up along that edge, meaning decrease the labels on each of the adjacent vertices by
1, and insert a new vertex labeled (−1) in the middle of the edge. Repeat this process,
always blowing up along an edge emanating from the unique (−1) vertex. We obtain linear
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Figure 6. Recursive procedure to build linear graphs which can be ra-
tionally blown-down.

graphs from these cyclic ones by deleting the unique (−1) vertex along with its adjacent
edges. See Figure 6 for the first few steps. The linear graphs which can be obtained by
this procedure form the entire family of Park’s generalized linear rational blow-downs.
Notice that if the final linear graph contains N vertices, then it was obtained by this
procedure by performing N − 1 blow-ups starting with the base −4 case. Without loss
of generality, we may suppose the first blow-up was done along the edge which emanates
counter-clockwise from the (−1) vertex. Suppose we perform a total of m1 ≥ 1 blow-
ups along the counter-clockwise emanating edge before performing one on the clockwise
emanating edge. Then we obtain a vertex labeled (−4−m1) adjacent to the (−1) vertex
along with m1 (−2) vertices on the other side. Then suppose we perform m2 blow-ups
along the clockwise emanating edge before switching back. This has the effect of changing
one of the (−2) vertices to a (−2−m2) vertex and leaving a chain of (−2) vertices on the
other side. As we switch back and forth performingmj blow-ups on a given side each time,
we produce a linear graph whose vertices have labels (−4−m1), (−2−m2), · · · , (−2−mn)
along with many (−2) vertices. The total number of vertices at the end is 1 +

∑

j mj .
If the plumbing Pa,b could be symplectically rationally blown down to obtain La,b,

there must exist a plumbing with ab vertices, which can be rationally blown-down and can
embed into Pa,b. We use the adjunction formula to rule out this possibility. H2(Pa,b;Z)
is generated by the core spheres of the plumbing. Let S0 denote the central sphere, and
Si for i ∈ {1, · · · , 2ab− a− b}, denote the spheres in the arms.

Each core sphere is symplectic, so the adjunction formula holds: 〈c1(ω), Si〉 = [Si]
2+2.

Therefore, 〈c1(ω), [S0]〉 = −a − b and 〈c1(ω), [Si]〉 = 0 for i ≥ 1. Now for any other

symplectic sphere S embedded in P , we can write [S] =
∑ab−a−b

i=0
ai[Si]. Then [S]2 +2 =

〈c1(ω), [S]〉 = −(a+b)a0. In particular, [S]2+2 must be divisible by (a+b). By definition,
we assume a, b ≥ 2. If a + b > 4 then any plumbing which contains a symplectic sphere
S of square −3, −4, or −6 cannot embed into Pa,b because then [S]2 + 2 ∈ {−1,−2,−4}
which is never divisible by a + b > 4. Furthermore, when a = b = 2 it is not possible
to embed the plumbings with −3 or −4 spheres and the other non-linear examples have
at least 5 > ab vertices so those could not be used to get from P2,2 to L2,2. To rule out
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the linear rational blow-downs, we use the description above of these graphs. If all of the
spheres S in the linear graph have the property that [S]2+2 is divisible by (a+b) then by
the above discussion, (a+ b) divides (−2−m1),−m2, · · · ,−mn. Therefore (a+ b) divides
2 +

∑

j mj . On the other hand, if the rational blow-down changes Pa,b to La,b then it

must rationally blow-down a graph with ab vertices so ab = 1+
∑

j mj . We conclude that

ab+1 is divisible by (a+ b). Therefore under the hypotheses of the theorem, La,b cannot
be obtained from Pa,b by any sequence of rational blow-downs.

�

Remark 5.4. We expect that all of the star surgery operations which replace Pa,b by
La,b are inequivalent to sequences of rational blow-downs (as well as many other star
surgeries). The hypothesis of the current proof ensures that we cannot embed at least
one sphere of any appropriately sized rational blow-down. Lattice embedding arguments
could be used to prove stronger results in additional cases.

Remark 5.5. Interpreting these star surgery operations as monodromy substitutions, we
conclude that the relation in the planar mapping class monoid given by Lemma 5.2 cannot
be generated by the lantern and daisy relations or the other relations corresponding to
other rational blow-downs given in [EMV11].
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