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The Orlik-Solomon algebra and the Bergman fan

of a Matroid

Ilia Zharkov

Abstract. Given a matroid M one can define its Orlik-Solomon algebra OS(M)
and the Bergman fan Σ0(M). On the other hand to any rational polyhedral fan Σ
one can associate its tropical homology and cohomology groups F•(Σ), F•(Σ). We
show that the projective Orlik-Solomon algebra OS0(M) is canonically isomorphic
to F•(Σ0(M)). In the realizable case this provides a geometric interpretation of the
homology of the complement of the corresponding hyperplane arrangement in P

n.

1. Notations and Statements

1.1. Tropical homology and cohomology

Let Σ =
⋃
σ ⊂ R

N = Z
N ⊗ R be an integral polyhedral fan. For each cone σ ⊂ Σ we

denote by 〈σ〉Z the integral lattice in the vector subspace linearly spanned by σ.

Definition 1.1. [2] The homology group Fk(Σ) is the subgroup of ∧k
Z
N generated by the

elements v1 ∧ · · · ∧ vk, where all v1, . . . , vk ∈ 〈σ〉Z for some cone σ ∈ Σ. The cohomology

is the dual group Fk(Σ) := Hom(Fk(Σ),Z), which is the quotient of ∧•(ZN )∗ by (Fk)
⊥.

Lemma 1.2. The wedge product on ∧•(ZN )∗ descends to F•, that is, F• is endowed with

a natural algebra structure over Z.

Proof. We just need to show that the subgroup of ∧•(ZN )∗ annihilating F• forms an
ideal. Let f ∈ (Fk)

⊥, then for any α ∈ (ZN )∗ and any collection v0, v1, . . . , vk ∈ 〈σ〉Z we
have

(α ∧ f)(v0 ∧ v1 ∧ · · · ∧ vk) =

k∑

i=0

(−1)iα(vi)f(v0 ∧ . . . v̂i · · · ∧ vk),

which vanishes since any k-subset of v0, v1, . . . , vk is also in 〈σ〉Z. Hence α ∧ f is in
(Fk+1)

⊥. �
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1.2. The Bergman fan

Let M be a loopless matroid of rank n on the set {0, . . . , N}. Let V be the rank
N + 1 free abelian group generated by elements e0, . . . , eN . Consider the simplicial fan
Σ(M) ⊂ VR built on the lattice of flats of M . Namely, the rays of Σ are along the vectors
eJ := ej1 + · · ·+ ejk for each flat J = {j1, . . . , jk}. The k dimensional cones of Σ(M) are
spanned by the k-tuples of rays indexed by flags of flats of length k. We will also use the
notation

EI := ei1 ∧ · · · ∧ eik

for any subset {i1, . . . , ik} ⊂ M . Note the distinction between EI and eI . We reserve
letter J to denote flats in M , while I will be used for general subsets of M .

The Bergman fan is the quotient fan Σ0(M) of Σ(M) at the ray eM . Namely, it is de-
fined like above by the lattice of proper flats of M in the quotient lattice
V0 = V/〈e0 + · · ·+ eN 〉.

Sturmfels [5] gave a different but equivalent definition of the Bergman fan and noticed
that in tropical geometry it represents a linear space. Later Ardila and Klivans [1] studied
its combinatorics and showed, among other things, that Σ0(M) is indeed a balanced fan
of degree 1.

1.3. The Orlik-Solomon algebra

To the same matroid M one can associate its Orlik-Solomon algebra OS•(M) over
Z defined below. In case M is realizable by a hyperplane arrangement in P

n−1, the
projectivized versionOS•

0 (M) of this algebra calculates the cohomology of the complement
of this arrangement. (See [3] for more details).

Let W be the rank N + 1 free abelian group generated by elements f0, . . . , fN . Then
OS•(M) := ∧•W/I•, where the Orlik-Solomon ideal I is generated by the elements

∂(fi0 ∧ fi1 ∧ · · · ∧ fik) :=

k∑

s=0

(−1)sfi0 ∧ . . . f̂is · · · ∧ fik ,

for all dependent subsets I = {i0, i1, . . . , ik}. We will use the notation

FI := fi0 ∧ fi1 ∧ · · · ∧ fik .

The sign of FI depends on the order of I, so we assume that all subsets of M are ordered.
The projective Orlik-Solomon algebra OS•

0 (M) is defined as follows. Let W0 be the
subgroup of W generated by all differences fi − fj . Then we set OS•

0 (M) := ∧•W0/I
•
0 ,

where I0 = I ∩ ∧•W0 is the restriction of I to the subalgebra ∧•W0 ⊂ ∧•W .

Theorem 1.3. Let M be a loopless matroid of rank n on the set {0, . . . , N}. Let V
and W be two dual free abelian groups of rank N + 1 with the dual bases {e0, . . . , eN}
and {f0, . . . , fN}. Let Σ(M) be the fan in VR associated to the basis {ei} of M and let

I•(M) = ∧•W/I• be the Orlik-Solomon algebra of M with respect to the basis {fi}. Then
Fk(Σ(M))⊥ = Ik(M).
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An important corollary (which is the main result of the paper) of this theorem on the
projective level says:

Theorem 1.4. There is a canonical isomorphism F•(Σ0(M)) ∼= OS•
0 (M) of graded

algebras.

2. Two illustrations of F2(Σ0)
⊥ = I2

0

Example 1. Matroid M1 on 4 elements of rank 2 represented by 4 lines in P
2 (see Fig. 1).
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Figure 1. Matroid M1 and its Bergman fan.

The flats are:

1234

123 14 24 34

1 2 3 4

and the only circuit is 123. Thus the Orlik-Solomon ideal is generated by ∂F123 given
by F12 + F23 + F31. On the other hand F2(Σ0(M1)) ∼= Z

2 is generated by Ei4 = ei ∧ e4,
i = 1, 2, 3. It is clear that F12 + F23 + F31 is the only (up to scalars) orthogonal bivector
to all Ei4 = ei ∧ e4, i = 1, 2, 3.
Example 2. Matroid M2 on 6 elements of rank 2 represented by 6 lines in P

2 (see Fig. 2).
It is isomorphic to the graphical matroid for the complete graph K4.

The flats are:

123456

125 13 146 24 236 56 345

1 2 3 4 5 6
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Figure 2. Matroid M2. Its Bergman fan in R
5 is combinatorially the

cone over the (subdivided) Petersen graph.

and the circuits of rank 2 are 125, 146, 236 and 345. There are also 3 circuits of rank 3:
1234, 1356 and 2456. Thus the Orlik-Solomon ideal in degree 2 is generated by

∂F125 = F12 + F25 + F51

∂F146 = F14 + F46 + F61

∂F236 = F23 + F36 + F62

∂F345 = F34 + F45 + F53

On the other hand F2(Σ0(M2)) is generated by the 15 bivectors (one for each 2-dimensional
cone). Note that, say, e1 ∧ e13 = e13 ∧ e3 = e1 ∧ e3 counts as one bivector. There are 10
linear relations among them, one for each ray of Σ0(M2). For instance, around the e1-ray
e1 ∧ (e3 + e146 + e125) = 0 , or around the e125-ray e125 ∧ (e1 + e2 + e5) = 0. And there is
a relation among the relations (the sum is tautologically 0 in Λ2

Z
5).

One can easily see that all 15 bivectors are orthogonal to the four generating Orlik-
Solomon elements in I2

0 (M2) above. Counting dimensions (15-10+1=6) we conclude that
F2(Σ0(M2)) ⊂ Λ2(Z5) is of rank 6, and hence is the orthogonal subgoup to I2

0 (M2) in
Λ2(Z5)∗.

3. Proofs of Theorems 1.3 and 1.4

For a flat J ⊂ M we consider the restricted groups Fk(J) := Fk(Σ(J)) as subgroups
of ∧•V under the natural embedding ∧•(Z〈ej , j ∈ J〉) ⊂ ∧•V . We also consider the
restricted Orlik-Solomon algebra OS•(J) := ∧•W/I•(J) by defining the ideal I•(J) in
∧•W to be generated by the ∂FI with dependent I ⊂ J , and by the fi, i 6∈ J .

Lemma 3.1. Fk(M) = Z〈Fk(J)〉rk(J)=k.
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Proof. Let J ⊂ J ′′ be two flats whose ranks differ by 2 or more. Let J ′
1, . . . J

′
s be the set

of flats between J and J ′′ of rank exactly one larger than the rank of J . Then the sets
J, J ′

1 \ J, . . . , J
′
s \ J give a partition of J ′′. Hence

eJ ∧ eJ′′ =
s∑

i=1

eJ ∧ eJ′

i
.

By induction, for any k-flag of flats J1 ⊂ · · · ⊂ Jk the element eJ1
∧ · · · ∧ eJk

can be
rewritten as a sum

eJ1
∧ · · · ∧ eJk

=
∑

eJ′′

1
∧ . . . eJ′′

k
,

where all flags J ′′
1 ⊂ · · · ⊂ J ′′

k consist of flats of ranks 1, . . . , k, respectively. �

Lemma 3.2. As an abelian group Ik = Z〈FI′ , ∂FI′′〉, where I ′ and I ′′ run over de-

pendent sets in M of size k and k + 1, respectively. In particular, in the top degree

In = Z〈FI , Im{∂ : ∧n+1W → ∧nW}〉 = Z〈FI , ker{∂ : ∧nW → ∧n−1W}〉, where I runs

over dependent sets of size n.

Proof. The group Ik is generated by elements in the form ∂FI∧FL where I is a dependent
set. Using the Leibnitz rule we rewrite

∂FI ∧ FL = ∂(FI ∧ FL)± FI ∧ ∂FL.

The set I ∪L is dependent of size (k + 1) and so are all subsets indexing simple terms in
FI ∧ ∂FL since each contains I.

For the statement in the top degree notice that every set of size (n+ 1) is dependent.
Also (∧•W,∂) is an acyclic complex, that is Im ∂ = ker ∂. �

Remark 3.1. For the second subset of generators it is enough to take ∂FI with rank of
I exactly k, since ∂FI with I of smaller ranks are already included in the first subset of
generators.

Remark 3.2. Note that the projective Orlik-Solomon ideal I0 is generated as an abelian
group just by the ∂FI for dependent I. Indeed, note that

∧•W0 = Im{∂ : ∧•W → ∧•W} = ker{∂ : ∧•W → ∧•W}.

But from the Lemma 3.2 if α ∈ I we can write α =
∑

FI′ +
∑

∂FI′′ , with all I ′, I ′′

dependent sets. On the other hand ∂α = ∂(
∑

FI′) = 0 means
∑

FI′ = ∂
∑

F
Î
, where

every Î is an extension by one element of some dependent I, and hence is also dependent.

Lemma 3.3. Ik = ∩rk(J)=kI
k(J).

Proof. First we argue that for any rank k flat J we have Ik ⊂ Ik(J). Indeed, according

to Lemma 3.2 and the Remark 3.1 we just have to show that ∂F
Î
∈ Ik(J) for Î of size

k+1 and rank k. If Î ⊂ J or |Î \J | ≥ 2, we are done. Otherwise, say |Î \J | = {s}. Then

∂F
Î
= fs ∧ (. . . )± F

Î\s.
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But Î \ s ⊂ J must have rank k− 1 (or, otherwise Î ⊂ J), hence is dependent. Thus F
Î\s

is in Ik(J), and so is ∂F
Î
. Consequently, Ik ⊂ ∩rk(J)=kI

k(J).
To show the converse we notice that each I is contained in a unique flat of the same

rank (the matroidal closure of I). We group the terms in an element α =
∑

FI ⊂ ∧kW
by their flats:

α = α<k +
∑

rk(J′)=k

αJ′

where α<k contains terms FI with dependent I.
Now if α ∈ Ik(J) for some rank k flat J , then in the above decomposition

α<k ∈ Ik ⊂ Ik(J).

Also all αJ′ with J ′ 6= J , are in Ik(J), and hence so is αJ . But all terms FI in Ik(J) with

independent I ⊂ J have to come from ∂F
Î
for some dependent Î ⊂ J . Thus αJ ∈ Ik.

Taking the intersection over all k-flats completes the proof. �

Proof of Theorem 1.3. Taking the intersection in Lemma 3.3 is orthogonal to taking the
sum in Lemma 3.1. Thus it is enough to prove the statement in the top degree for any
matroid. By dualizing the top degree part of Lemma 3.2 it suffices then to show that
Fn = 〈EI〉 ∩ Im(∂∗), where the I run over independent n-sets of M and the operator
∂∗ : ∧n−1V → ∧nV, given by ∂∗(EI) = eM ∧ EI is the adjoint operator to the operator
∂ : ∧nW → ∧n−1W .

For any complete flag of flats J1 ⊂ · · · ⊂ Jn−1 ⊂ M the polyvector

eJ1
∧ · · · ∧ eM = eJ1

∧ eJ2\J1
∧ · · · ∧ eM\Jn−1

=
∑

EI

contains only terms with independent I. Thus Fn ⊂ 〈EI〉 ∩ Im(∂∗). We will show the
converse by induction on the rank of M . For rank 1 matroids both spaces are Z〈eM 〉 and
there is nothing to prove.

Suppose now α = eM ∧ β =
∑

E
Î
, with all Î independent. We may choose a rep-

resentation for β =
∑

EI with all I independent subsets as follows. Substituting, say,

e0 = −
∑N

i=1 ei mod eM into β we will have

α = e0 ∧ β + (terms with no e0)

and any term EI with dependent I in β will result in E0∪I in α with dependent Î = 0∪ I
which cannot happen.

Let J1, . . . , Jr be all rank (n − 1) flats in M . We again group the terms in β by the
respective flats β = βJ1

+ · · ·+ βJr
. Then writing

α = (eJ1
∧ βJ1

+ · · ·+ eJr
∧ βJr

) + (eM\J1
∧ βJ1

+ · · ·+ eM\Jr
∧ βJr

)

we note that both α and the second summand contain terms EI only with independent I.
On the other hand, each eJk

∧βJk
contains terms of rank n−1, and there no cancellations

possible among different k. Thus eJk
∧ βJk

= 0. By exactness of the (eJk
∧)-operator we

can write each βJk
as eJk

∧ γJk
and use the induction assumption. �
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Proof of Theorem 1.4. With the choice of the dual bases for V and W the restriction to
W0 in W is exactly dual to the quotient by eM in V , and the duality extends to the
exterior algebras. On the other hand, the identification in Theorem 1.3 clearly extends to
the level of graded ideals F•(Σ(M))⊥ = I•, as well as to their restrictions to ∧•W0. �
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