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On the number of solutions to the asymptotic Plateau

problem

Baris Coskunuzer

Abstract. By using a simple topological argument, we show that the space of closed,

orientable, codimension-1 submanifolds of S
n−1
∞ (Hn) which bound a unique abso-

lutely area minimizing hypersurface in H
n is dense in the space of closed, orientable,

codimension-1 submanifolds of S
n−1
∞ (Hn). In particular, in dimension 3, we prove

that the set of simple closed curves in S2
∞
(H3) bounding a unique absolutely area

minimizing surface in H
3 is not only dense, but also a countable intersection of open

dense subsets of the space of simple closed curves in S2
∞
(H3) with C0 topology. We

also show that the same is true for least area planes in H
3. Moreover, we give some

non-uniqueness results in dimension 3.

1. Introduction

The asymptotic Plateau problem in hyperbolic space asks for the existence of an abso-
lutely area minimizing hypersurface Σ ⊂ Hn asymptotic to a given closed codimension-1
submanifold Γ in Sn−1

∞ (Hn). This problem has been solved by Michael Anderson in his
seminal paper [4]. He proved the existence of a solution for any given closed submanifold
in the sphere at infinity. Then, Hardt and Lin studied the asymptotic regularity of these
solutions in [14], [17]. Lang generalized Anderson’s methods to solve this problem in
Gromov-Hadamard spaces in [16].

On the other hand, there are only a few results so far on the number of the absolutely
area minimizing hypersurfaces for a given asymptotic boundary. In [4], Anderson showed
that if the given asymptotic boundary Γ bounds a convex domain in Sn−1

∞ (Hn), then
there exists a unique absolutely area minimizing hypersurface in Hn. Then, Hardt and
Lin generalized this result to the closed codimension-1 submanifolds bounding star shaped
domains in Sn−1

∞ (Hn) in [14]. Recently, the author showed a generic uniqueness result
in dimension 3 for least area planes in [7], [8]. For other results on asymptotic Plateau
problem, see the survey article [11].

Key words and phrases. Asymptotic Plateau problem, uniqueness, hyperbolic space, least area plane,
absolutely area minimizing surface.
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In this paper, we give some uniqueness results for the solutions to the asymptotic
Plateau problem. We first show that the space of simple closed curves in S2

∞(H3) bound-
ing a unique least area plane in H3 is a countable intersection of open dense subsets of
the space of simple closed curves in S2

∞(H3) by using simple topological arguments.

Theorem 3.3. Let A be the space of simple closed curves in S2
∞(H3) and let A′ ⊂ A

be the subspace containing the simple closed curves in S2
∞(H3) bounding a unique least

area plane in H3. Then, A′ is dense in A with respect to the C0-topology. Indeed, A′ is
a countable intersection of open dense subsets of A with respect to the C0-topology.

We show that the same is true for absolutely area minimizing hypersurfaces in H3 as
well.

Corollary 4.5. Let A be the space of simple closed curves in S2
∞(H3) and let A′ ⊂ A be

the subspace containing the simple closed curves in S2
∞(H3) bounding a unique absolutely

area minimizing surface in H3. Then, A′ is dense in A with respect to the C0-topology.
Indeed, A′ is a countable intersection of open dense subsets of A with respect to the
C0-topology.

For higher dimensions, we have the following density result.

Theorem 4.4. Let B be the space of connected, closed, orientable codimension-1 sub-
manifolds of Sn−1

∞ (Hn), and let B′ ⊂ B be the subspace containing the submanifolds of
Sn−1
∞ (Hn) bounding a unique absolutely area minimizing hypersurface in Hn. Then B′

is dense in B with respect to the C0-topology.

A short outline of the technique to prove the main result is the following: For simplicity,
we will focus on the case of the least area planes in H3 (Theorem 3.3). Let Γ0 be a simple
closed curve in S2

∞(H3). First, we will show that either there exists a unique least area
plane Σ0 in H3 with ∂∞Σ0 = Γ0, or there exist two disjoint least area planes Σ+

0 ,Σ
−
0

in H3 with ∂∞Σ±
0 = Γ0. Now, take a small neighborhood N(Γ0) ⊂ S2

∞(H3) which is
an annulus. Then foliate N(Γ0) by simple closed curves {Γt} where t ∈ (−ǫ, ǫ), i.e.,
N(Γ0) ≃ Γ× (−ǫ, ǫ). By the above fact, for any Γt either there exists a unique least area
plane Σt, or there are two least area planes Σ±

t disjoint from each other. Also, since these
are least area planes, if they have disjoint asymptotic boundary, then they are disjoint by
Meeks-Yau exchange roundoff trick. This means, if t1 < t2, then Σt1 is disjoint and below

from Σt2 in H3. Consider this collection of least area planes. Note that for curves Γt

bounding more than one least area plane, we have a canonical region Nt in H3 between
the disjoint least area planes Σ±

t , see Figure 1.
Now, N(Γ) separates S2

∞(H3) into two parts. Take a geodesic β ⊂ H3 which is asymp-
totic to two points that belong to these two different parts. This geodesic is transverse
to the collection of these least area planes asymptotic to the curves in {Γt}. Also, a
finite segment of this geodesic intersects the entire collection. Let the length of this finite
segment be C. Now, consider the thickness of the neighborhoods Nt assigned to the as-
ymptotic curves {Γt}. Let st be the length of the segment It of β between Σ+

t and Σ−
t ,
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which is the width of Nt assigned to Γt. Then, the curves Γt bounding more than one
least area plane have positive width, and contribute to total thickness of the collection,
and the curves bounding unique least area planes have 0 width and do not contribute to
the total thickness. Since

∑
t∈(−ǫ,ǫ) st < C, the total thickness is finite. This implies for

only countably many t ∈ (−ǫ, ǫ), st > 0, i.e., Γt bounds more than one least area plane.
For the remaining uncountably many t ∈ (−ǫ, ǫ), st = 0, and there exists a unique least
area plane for those t. This proves the space of simple closed curves of uniqueness is dense
in the space of simple closed curves in S2

∞(H3). Then, we will show this space is not only
dense, but also a countable intersection of open dense subsets.

We should note that this technique is quite general and it can be applied to many
different settings of the Plateau problem (see Concluding remarks).

On the other hand, after the above uniqueness results, it is a reasonable question
whether all simple closed curves in S2

∞(H3) bound a unique absolutely area minimizing
surface or a unique least area plane. Up till now, it has not been known whether all simple
closed curves in S2

∞(H3) have a unique solution to the asymptotic Plateau problem or
not. The only known results about nonuniqueness also come from Anderson in [5]. He
constructs examples of simple closed curves in S2

∞(H3) bounding more than one complete
minimal surface inH3. These examples are also area minimizing in their topological class.
However, none of them are absolutely area minimizing, i.e., a solution to the asymptotic
Plateau problem.

In this paper, we show the existence of simple closed curves in S2
∞(H3) with nonunique

solution to the asymptotic Plateau problem.

Theorem 5.2. There exists a simple closed curve Γ in S2
∞(H3) such that Γ bounds more

than one absolutely area minimizing surface {Σi} in H3 with ∂∞Σi = Γ.

By using similar ideas, we also show the existence of simple closed curves in S2
∞(H3)

bounding more than one least area planes in H3 (Theorem 5.3).

The organization of the paper is as follows: In the next section we will cover some
basic results which will be used in the following sections. In section 3, we will show
the uniqueness results for least area planes in H3. Then in section 4, we will show the
results on absolutely area minimizing hypersurfaces in Hn. In Section 5, we will prove
the nonuniqueness results. Finally in section 6, we will have some concluding remarks.

2. Preliminaries

In this section, we will overview the basic results which we will use in the following
sections. For details on the notions and results in this section, see the survey article [11].

First, we will give the definitions of area minimizing surfaces. First set of the definitions
are about compact surfaces and hypersurfaces. The second set of the definitions are their
generalizations to the noncompact surfaces and hypersurfaces.
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Definition 2.1. (Compact Case) A least area disk (area minimizing disk) is a disk which
has the smallest area among the disks with the same boundary. An absolutely area min-

imizing surface is a surface which has the smallest area among all the surfaces (with no
topological restriction) with the same boundary. An absolutely area minimizing hyper-

surface is a hypersurface which has the smallest volume among all hypersurfaces with the
same boundary.

Definition 2.2. (Noncompact Case) A least area plane is a plane such that any com-
pact subdisk in the plane is a least area disk. We will also call a complete noncompact
surface as absolutely area minimizing surface if any compact subsurface is an absolutely
area minimizing surface. Similarly, we will call a complete noncompact hypersurface as
absolutely area minimizing hypersurface, if any compact part (codimension-0 submanifold
with boundary) of the hypersurface is an absolutely area minimizing hypersurface.

Now, we will quote the basic results on asymptotic Plateau problem.

Lemma 2.3. [4] Let Γ be a codimension-1 closed submanifold of Sn−1
∞ (Hn). Then there

exists a complete, absolutely area minimizing n − 1-rectifiable current Σ in Hn with

∂∞Σ = Γ.

Note that the rectifiable current here is indeed a smooth hypersurface of Hn except for
a singular set of Hausdorff dimension at most n− 8 by the regularity result stated below.
For convenience, we will call area minimizing codimension-1 rectifiable currents as area
minimizing hypersurfaces throughout the paper.

Lemma 2.4. [5] Let Γ be a simple closed curve in S2
∞(H3). Then, there exists a complete,

least area plane Σ in H3 asymptotic to Γ.

The following fact about interior regularity theory of geometric measure theory is well-
known.

Lemma 2.5. [12] Let Σ be a (n−1)-dimensional area minimizing rectifiable current. Then

Σ is a smooth, embedded manifold in the interior except for a singular set of Hausdorff

dimension at most n− 8.

Finally, we will state a theorem about limits of sequences of least area planes. Here,
the limit is the pointwise limit of the planes, and for each limit point, there is a disk
containing the point in the limit set such that it is the limit of a sequence of subdisks in
the planes [13, Lemma 3.3].

Lemma 2.6. [13] Let {Σi} be a sequence of least area planes in H3 with ∂∞Σi = Γi

simple closed curves in S2
∞(H3) for any i. If Γi → Γ, then there exists a subsequence

{Σij} of {Σi} such that Σij → Σ̂, where Σ̂ is a collection of least area planes whose

asymptotic boundaries are Γ.

The next theorem is a similar limit theorem about absolutely area minimizing hyper-
surfaces in Hn.
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Lemma 2.7. Let {Γi} be a sequence of connected closed codimension-1 submanifolds in

Sn−1
∞ (Hn) which are pairwise disjoint. Let {Σi} be a sequence of complete absolutely

area minimizing hypersurfaces in Hn with ∂∞(Σi) = Γi. If Γi converges to a closed

codimension-1 submanifold Γ in Sn−1
∞ (Hn), then there exists a subsequence of {Σi} which

converges to a complete absolutely area minimizing hypersurface Σ in Hn with ∂∞Σ = Γ.

Proof:To prove the Lemma 2.3, Anderson constructs a sequence of absolutely area min-
imizing surfaces {Ti} with ∂Ti → Γ, and for any compact set K, gives lower and upper
bounds for the area of the surfaces in the sequence when restricted to K. Then using
isoperimetric inequality, he shows that the sequence satisfies the requirements for the com-
pactness theorem of geometric measure theory [12]. By taking K as enlarging closed balls
Bi(x0), and by using a diagonal sequence argument, he proves the existence of complete,
absolutely area minimizing rectifiable n− 1-current Σ with ∂∞Σ = Γ.

By using Anderson’s method, all we need to show is that we can induce a suitable
sequence of compact absolutely area minimizing hypersurfaces {Si} from {Σi} where
γi = ∂Si converges to Γ in S2

∞(H3).

Let K > 0 be sufficiently large so that Σi ∩ NK(CH(Γ)) 6= ∅ where NK(CH(Γ)) is
the K neighborhood of the convex hull of Γ. Then, let Si = NK(CH(Γ)) ∩ Σi. Notice
that ∂Si ⊂ ∂NK(CH(Γ)). Since K > 0 is fixed, ∂NK(CH(Γ)) would be asymptotic to
Γ. Since Σi ⊂ CH(Γi) and Γi → Γ, then ∂Si must converge to Γ asymptotically.

In order to get the upper and lower bounds needed in the Anderson’s proof, since all
the surfaces in the sequence are in NK(CH(Γ)), while the surfaces in the sequence in
Anderson’s case are in CH(Γ), the same arguments would work with slight modification
for the uniform mass bounds coming from NK(CH(Γ)) as K > 0 is fixed. Hence, again
by compactness theorem [12], we get convergent subsequences for enlarging closed balls
Bi(x0). Then, again by using a diagonal sequence argument, we get a subsequence {Sij}
which converges to a complete absolutely area minimizing hypersurface Σ in Hn with
∂∞Σ = Γ.

Convention: All the surfaces and hypersurfaces in the paper are assumed to be orientable.

3. Least area planes in H3

In this section, we will prove that the space of simple closed curves in S2
∞(H3) bounding

a unique least area plane in H3 is dense in the space of simple closed curves in S2
∞(H3).

First, we will show that if two least area planes have disjoint asymptotic boundaries,
then they are disjoint.

Lemma 3.1. Let Γ1 and Γ2 be two disjoint simple closed curves in S2
∞(H3). If Σ1 and

Σ2 are least area planes in H3 with ∂∞Σi = Γi, then Σ1 and Σ2 are disjoint.
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Proof: Assume that Σ1∩Σ2 6= ∅. Since asymptotic boundaries Γ1 and Γ2 are disjoint, the
intersection cannot contain an infinite line. So, the intersection between Σ1 and Σ2 must
contain a simple closed curve γ. Since Σ1 and Σ2 are also minimal, and the tangential
intersection of minimal surfaces must be isolated by maximum principle, the intersection
must be transverse on a subarc τ of γ.

Now, γ bounds two area minimizing disks D1 and D2 in H3, with Di ⊂ Σi. Now, take
a larger subdisk E1 of Σ1 containing D1, i.e., D1 ⊂ E1 ⊂ Σ1. By definition, E1 is also an
area minimizing disk. Now, modify E1 by swaping the disks D1 and D2. Then, we get a
new disk E′

1 = {E1 −D1} ∪D2. Now, E1 and E′
1 have same area, but E′

1 has a folding
curve along γ. Since Σ1 and Σ2 is transverse along τ , by smoothing out E′

1 near τ as
in [19], we get a disk with smaller area, which contradicts to E1 being area minimizing.
Note that this technique is known as Meeks-Yau exchange roundoff trick.

The following lemma is very essential for our technique. Mainly, the lemma says that
for any given simple closed curve Γ in S2

∞(H3), either there exists a unique least area
plane Σ in H3 asymptotic to Γ, or there exist two least area planes Σ± in H3 which are
asymptotic to Γ and disjoint from each other. Even though this lemma is also proven in
[10], because of its importance for the technique, and to set the notation for the main
result, we give a proof here. Note that Brian White proved a similar version of this lemma
by using geometric measure theory methods in [22].

Lemma 3.2. Let Γ be a simple closed curve in S2
∞(H3). Then either there exists a unique

least area plane Σ in H3 with ∂∞Σ = Γ, or there are two canonical disjoint extremal least

area planes Σ+ and Σ− in H3 with ∂∞Σ± = Γ. Moreover, any least area plane Σ′ with

∂∞Σ′ = Γ is disjoint from Σ±, and it is captured in the region bounded by Σ+ and Σ− in

H3.

Proof: Let Γ be a simple closed curve in S2
∞(H3). Γ separates S2

∞(H3) into two parts,
say D+ and D−. Define sequences of pairwise disjoint simple closed curves {Γ+

i } and
{Γ−

i } such that Γ+
i ⊂ D+, and Γ−

i ⊂ D− for any i, and Γ+
i → Γ, and Γ−

i → Γ.
By Lemma 2.4, for any Γ+

i ⊂ S2
∞(H3), there exists a least area plane Σ+

i in H3

asymptotic to Γ+
i . This defines a sequence of least area planes {Σ+

i }. Now, by using
Lemma 2.6, we take the limit of a convergent subsequence. In the limit we get a collection

of least area planes Σ̂+ with ∂∞Σ̂+ = Γ, as ∂∞Σ+
i = Γ+

i → Γ.

Now, we claim that the collection Σ̂+ consists of only one least area plane. Assume

that there are two least area planes Σ+
a and Σ+

b in the collection Σ̂+. Since we have

∂∞Σ+
a = ∂∞Σ+

b = Γ, Σ+
a and Σ+

b might not be disjoint, but they are disjoint from least

area planes in the sequence, i.e., Σ+
i ∩ Σ+

a,b = ∅ for any i, by Lemma 3.1.

If Σ+
a and Σ+

b are disjoint, say Σ+
a is above Σ+

b . By Lemma 3.1, we know that for

any i, Σ+
i is above both Σ+

a and Σ+
b . However this means that Σ+

a is a barrier between
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the sequence {Σ+
i } and Σ+

b , and so, Σ+
b cannot be limit of this sequence, which is a

contradiction.
If Σ+

a and Σ+
b are not disjoint, then they intersect each other, and in some region,

Σ+
b is above Σ+

a . However since Σ+
a is the limit of the sequence {Σ+

i }, this would imply

Σ+
b must intersect planes Σ+

i for sufficiently large i. However, this contradicts the fact

that Σ+
b is disjoint from Σ+

i for any i, as they have disjoint asymptotic boundary. So,

there exists a unique least area plane Σ+ in the collection Σ̂+. Similarly, Σ̂− = Σ−. By
using similar arguments, one can conclude that these least area planes Σ+, and Σ− are
canonical, i.e., independent of the choice of the sequence {Γ±

i } and {Σ±
i }.

Now, let Σ′ be any least area plane with ∂∞Σ′ = Γ. If Σ′ ∩Σ+ 6= ∅, then some part of
Σ′ must be above Σ+. Since Σ+ = limΣ+

i , for sufficiently large i, Σ′ ∩Σ+
i 6= ∅. However,

∂∞Σ+
i = Γ+

i is disjoint from Γ = ∂∞Σ′. Then, by Lemma 3.1, Σ′ must be disjoint from
Σ+

i . This is a contradiction.
Similarly, this is true for Σ−, too. Moreover, let N ⊂ H3 be the region between Σ+

and Σ−, i.e., ∂N = Σ+ ∪ Σ−. Then by construction, N is also a canonical region for
Γ, and for any least area plane Σ′ with ∂∞Σ′ = Γ, Σ′ is contained in the region N , i.e.,
Σ′ ⊂ N . This shows that if Σ+ = Σ−, there exists a unique least area plane asymptotic
to Γ. If Σ+ 6= Σ−, then they must be disjoint.

Now, we are going to prove the main theorem of the section.

Theorem 3.3. Let A be the space of simple closed curves in S2
∞(H3) and let A′ ⊂ A

be the subspace containing the simple closed curves in S2
∞(H3) bounding a unique least

area plane in H3. Then, A′ is dense in A with respect to the C0-topology. Indeed, A′ is

a countable intersection of open dense subsets of A with respect to the C0-topology.

Proof: We will prove this theorem in 2 steps.

Claim 1: A′ is dense in A with C0-topology.

Proof: Let Γ0 ∈ A be a simple closed curve in S2
∞(H3). Since Γ0 is simple, there

exists a small neighborhood N(Γ0) of Γ0 which is an open annulus in S2
∞(H3). Then,

we can find a homeomorphism φ : S1 × (−ǫ, ǫ) → N(Γ0) such that φ(S1 × {0}) = Γ0.
Then, let φ(S1 × t) = Γt. Since φ is a homeomorphism, {Γt} foliates N(Γ0) with simple
closed curves Γt. In other words, {Γt} are pairwise disjoint simple closed curves, and
N(Γ0) =

⋃
t∈(−ǫ,ǫ) Γt.

Now, N(Γ0) separates S
2
∞(H3) into two parts, say D+ and D−, i.e., N(Γ0)∪D+∪D−

gives S2
∞(H3). Let p+ be a point in D+ and let p− be a point in D− such that for a small

δ, Bδ(p
±) are in the interior of D±. Let β be the geodesic in H3 asymptotic to p+ and

to p−.
By Lemma 3.2, for any Γt either there exists a unique least area plane Σt in H3, or

there is a canonical region Nt in H3 between the canonical least area planes Σ+
t and Σ−

t

(In Figure 1, Γt and Γs bound more than one least area plane in H3, whereas Γ0 bounds
a unique least area plane Σ0 in H3). With abuse of notation, if Γt bounds a unique least
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area plane Σt in H3, define Nt = Σt as a degenerate canonical neighborhood for Γt (In
Figure 1, Nt and Ns represent nondegenerate canonical neighborhoods, and N0 = Σ0

represents degenerate canonical neighborhood). Then, let N̂ = {Nt} be the collection
of these degenerate and nondegenerate canonical neighborhoods for t ∈ (−ǫ, ǫ). Clearly,
degenerate neighborhood Nt means Γt bounds unique least area plane, and nondegenerate
neighborhood Ns means that Γs bounds more than one least area plane. Note that by
Lemma 3.1, all canonical neighborhoods in the collection are pairwise disjoint. On the
other hand, by construction the geodesic β intersects all the canonical neighborhoods in

the collection N̂ .
We claim that the part of β which intersects N̂ is a finite line segment. Let P+ be the

geodesic plane asymptotic to the round circle ∂Bδ(p
+) in D+. Similarly, define P−. By

Lemma 3.1, P± are disjoint from the collection of canonical regions N̂ . Let β∩P± = {q±}.

Then the part of β which intersects N̂ is the line segment l ⊂ β with endpoints q+ and
q−. Let C be the length of this line segment l.

Now, for each t ∈ (−ǫ, ǫ), we will assign a real number st ≥ 0. If there exists a unique
least area plane Σt in H3 for Γt (Nt is degenerate), then let st be 0. If not, let It = β∩Nt,
and st be the length of It. Clearly if Γt bounds more than one least area plane (Nt is
nondegenerate), then st > 0. Also, it is clear that for any t, It ⊂ l and It ∩ Is = ∅ for any
t 6= s. Then,

∑
t∈(−ǫ,ǫ) st < C where C is the length of l. This means for only countably
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Figure 1. A finite segment of geodesic γ intersects the collection of
least area planes Σt in Hn asymptotic to Γt in Sn−1

∞ (Hn).
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many t ∈ (−ǫ, ǫ), st > 0. So, there are only countably many nondegenerate Nt for
t ∈ (−ǫ, ǫ). Hence, for all other t, Nt is degenerate. This means there exist uncountably
many t ∈ (−ǫ, ǫ), where Γt bounds a unique least area plane. Since Γ0 is arbitrary, this
proves A′ is dense in A.

Claim 2: A′ is a countable intersection of open dense subsets in A with C0-topology.

Proof: We will define a sequence of open dense subsets U i ⊂ A such that their intersection
will give us A′, i.e., A′ =

⋂
U i.

Let Γ ∈ A be a simple closed curve in S2
∞(H3), as in the Claim 1. Let N(Γ) ⊂ S2

∞(H3)
be a neighborhood of Γ in S2

∞(H3), which is an open annulus. Then, define an open
neighborhood UΓ of Γ in A, such that UΓ = {α ∈ A | α ⊂ N(Γ), α is homotopic to Γ}.
Clearly, A =

⋃
Γ∈A UΓ. Now, define a geodesic βΓ as in Claim 1, which intersects all the

least area planes asymptotic to curves in UΓ.
Now, for any α ∈ UΓ, by Lemma 3.2, there exists a canonical region Nα in H3 (which

can be degenerate if α bounds a unique least area plane). Let Iα,Γ = Nα ∩ βΓ. Then let
sα,Γ be the length of Iα,Γ (sα,Γ is 0 if Nα degenerate). Hence, for every element α in UΓ,
we assign a real number sα,Γ ≥ 0.

Define the sequence of open dense subsets in UΓ by U i
Γ = {α ∈ UΓ | sα,Γ < 1/i }. We

claim that U i
Γ is an open subset of UΓ and A. Let α ∈ U i

Γ, and let sα,Γ = λ < 1/i. So,
the interval Iα,Γ ⊂ βΓ has length λ. Let I ′ ⊂ βΓ be an interval containing Iα,Γ in its
interior, and has length less than 1/i. By the proof of Claim 1, we can find two simple
closed curves α+, α− ∈ UΓ with the following properties:

• α± are disjoint from α,
• α± are lying in opposite sides of α in S2

∞(H3),
• α± bounds unique least area planes Σα± ,
• Σα± ∩ βΓ ⊂ I ′.

The existence of such curves is clear from the proof Claim 1, since if one takes any
foliation {αt} of a small neighborhood of α in S2

∞(H3), there are uncountably many
curves in the family bounding a unique least area plane, and one can choose sufficiently
close pair of curves to α, to ensure the conditions above.

After finding α±, consider the open annulus Fα in S2
∞(H3) bounded by α+ and α−.

Let Vα = {γ ∈ UΓ | γ ⊂ Fα, γ is homotopic to α}. Clearly, Vα is an open subset of UΓ.
If we can show Vα ⊂ U i

Γ, then this proves U i
Γ is open for any i and any Γ ∈ A.

Let γ ∈ Vα be any curve, and Nγ be its canonical neighborhood given by Lemma 3.2.
Since γ ⊂ Fα, α

+ and α− lie in opposite sides of γ in S2
∞(H3). This means Σα+ and Σα−

lie in opposite sides of Nγ . By choice of α±, this implies Nγ ∩ βΓ = Iγ,Γ ⊂ I ′. So, the
length sγ,Γ is less than 1/i. This implies γ ∈ U i

Γ, and so Vα ⊂ U i
Γ. Hence, U i

Γ is open in
UΓ and A.

Now, we can define the sequence of open dense subsets. Let U i =
⋃

Γ∈A U i
Γ be an open

subset of A. Since the elements in A′ represent the curves bounding a unique least area

9



COSKUNUZER

plane, sα,Γ = 0 for any α ∈ A′, and for any Γ ∈ A. This means A′ ⊂ U i for any i. As A′

is dense in A by Claim 1, U i is not only open, but also dense in A for any i > 0. On the
other hand, A′ =

⋂
i>0 U

i, as sα,Γ = 0 for any α ∈ A′, and for any Γ ∈ A. Then, A′ is

a countable intersection of open dense subsets {U i} of A. This implies A′ is a countable
intersection of open dense subsets in A with C0-topology.

Remark 3.1. Notice that we did not use the term generic for the countable intersection of
open dense subsets in the theorem. This is because even though C0-topology is complete,
the space A of simple closed curves in S2

∞(H3) with C0-topology is not complete as they
have non-simple (non-embedded) closed curves in the limit. Hence, even though A′ is
countable intersection of open dense subsets of A, this does not mean that A′ is generic
in A in Baire sense as A is not a complete metric space.

Remark 3.2. This result is similar to the uniqueness results in [8]. In [8], we used a
heavy machinery of analysis to prove that there exists an open dense subset in the space
of C3,µ-smooth embeddings of circle into sphere, where any simple closed curve in this
space bounds a unique least area plane in H3. In the above result, the argument is fairly
simple, and does not use the analytical machinery.

Remark 3.3. Note that by using similar techniques, the same result can be obtained by
using Hausdorff topology instead of C0 topology on the space of simple closed curves in
S2
∞(H3).

4. Area minimizing hypersurfaces in Hn

In this section, we will show that the space of codimension-1 closed submanifolds of
Sn−1
∞ (Hn) bounding a unique absolutely area minimizing hypersurface in Hn is dense in

the space of all codimension-1 closed submanifolds of Sn−1
∞ (Hn). The idea is similar to

the previous section.
First, we need to show a simple topological lemma.

Lemma 4.1. Any codimension-1 closed, orientable submanifold Γ of Sn−1 is separating

in Sn−1. Moreover, if Σ is a hypersurface with boundary in the closed unit ball Bn, where

the boundary ∂Σ ⊂ ∂Bn, then Σ is also separating, too.

Proof: If a codimension-1 closed, orientable submanifold Γ is non-separating in Sn−1,
then it does not bound any codimension-0 submanifold in Sn−1. This implies Γ generates
a nontrivial homology in n − 2 level. However, since Hn−2(S

n−1) is trivial, this is a
contradiction.

Let Σ be as in the assumption. Take the double of Bn, then Bn ⊔ B̂n = Sn, and Σ⊔ Σ̂

is a codimension-1 closed submanifold of Sn. By above, Σ⊔ Σ̂ is separating in Sn. Hence,
Σ is separating in Bn.

10
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Σ

Ω

Ω

+

−

1

2 H
n

S1 α

Σ1

S2

2

H
n

Σ1
’

Figure 2. S1 is the part of Σ1 lying below Σ2, and S2 is the part of Σ2

lying above Σ1. After swaping S1 and S2, we get a new area minimizing
hypersurface Σ′

1 with singularity along α = Σ1 ∩ Σ2.

Now, we will prove a disjointness lemma analogous to Lemma 3.1. This lemma roughly
says that if asymptotic boundaries of two absolutely area minimizing hypersurfaces in Hn

are disjoint in Sn−1
∞ (Hn), then they are disjoint in Hn.

Lemma 4.2. Let Γ1 and Γ2 be two disjoint connected, closed, orientable codimension-1
submanifolds in Sn−1

∞ (Hn). If Σ1 and Σ2 are absolutely area minimizing hypersurfaces in

Hn with ∂∞Σi = Γi, then Σ1 and Σ2 are disjoint, too.

Proof: Assume that the absolutely area minimizing hypersurfaces are not disjoint, i.e.,
Σ1 ∩ Σ2 6= ∅. By Lemma 4.1, Σ1, and Σ2 separates Hn into two parts. So we can write
Hn − Σi = Ω+

i ∪ Ω−
i .

Now, consider the intersection of hypersurfaces α = Σ1 ∩ Σ2. We claim that the
intersection set α is in the compact part of Hn. Clearly, as Σi ⊂ CH(Γi), then α is
in CH(Γ1) ∩ CH(Γ2). Consider the compactification of Hn in the Poincare ball model.
Then, Hn = Hn∪Sn−1

∞ (Hn) would be a closed n-ball topologically. Since ∂∞CH(Γi) = Γi

and Γ1 ∩ Γ2 = ∅, then CH(Γ1) ∩CH(Γ2) ∩ Sn−1
∞ (Hn) = ∅. As CH(Γ1) and CH(Γ2) are

compact subsets of Hn and CH(Γ1)∩CH(Γ2)∩ Sn−1
∞ (Hn) = ∅, then CH(Γ1)∩CH(Γ2)

would be compact in Hn, too. This shows that α is in a compact subset of Hn. Moreover,
by maximum principle [20], the intersection cannot have isolated tangential intersections.

Now, without loss of generality, we assume that Σ1 is above Σ2 (the noncompact part
of Σ1 lies in Ω+

2 ). Now define the compact subhypersurfaces Si in Σi as S1 = Σ1 ∩ Ω−
2 ,

and S2 = Σ2∩Ω+
1 . In other words, S1 is the part of Σ1 lying below Σ2, and S2 is the part

of Σ2 lying above Σ1. Then, ∂S1 = ∂S2 = α. See Figure 2. Note that if S1 = ∅ or S2 = ∅,
then this implies the intersection is tangential and Σ1 lies in one side of Σ2, but this

11
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contradicts to maximum principle for area minimizing hypersurfaces ([20], Corollary 1).
Hence, we can assume S1 6= ∅ and S2 6= ∅.

On the other hand, since Σ1 and Σ2 are absolutely area minimizing, then by definition,
so are S1 and S2, too. Then by swaping the surfaces, we can get new absolutely area
minimizing hypersurfaces. In other words, Σ′

1 = {Σ1−S1}∪S2, and Σ′
2 = {Σ2−S2}∪S1

are also absolutely area minimizing hypersurfaces. Note that by construction, Σ′
1 lies in

one side of Σ′
2 and vice versa.

Now, if the intersection of Σ1 and Σ2 is transverse in some part of α, we will have a
codimension-1 singularity set in Σ′

1, which contradicts to regularity theorem for absolutely
area minimizing hypersurfaces, i.e., Lemma 2.5. If the intersection along α is completely
tangential, since Σ′

1 lies in one side of Σ′
2, this contradicts to maximum principle for area

minimizing hypersurfaces ([20], Corollary 1). The proof follows.

Lemma 4.3. Let Γ be a connected, closed, orientable codimension-1 submanifold of

Sn−1
∞ (Hn). Then either there exists a unique absolutely area minimizing hypersurface

Σ in Hn asymptotic to Γ, or there are two canonical disjoint extremal absolutely area

minimizing hypersurfaces Σ+ and Σ− in Hn asymptotic to Γ.

Proof: Let Γ be a connected, closed, orientable codimension-1 submanifold of Sn−1
∞ (Hn).

Then by Lemma 4.1, Γ separates Sn−1
∞ (Hn) into two parts, say Ω+ and Ω−. Define

sequences of pairwise disjoint closed submanifolds of the same topological type {Γ+
i } and

{Γ−
i } in Sn−1

∞ (Hn) such that Γ+
i ⊂ Ω+, and Γ−

i ⊂ Ω− for any i, and Γ+
i → Γ, and Γ−

i → Γ
in Hausdorff metric. In other words, {Γ+

i } and {Γ−
i } converges to Γ from opposite sides.

By Lemma 2.3, for any Γ+
i ⊂ S2

∞(H3), there exists an absolutely area minimizing
hypersurface Σ+

i in Hn. This defines a sequence of absolutely area minimizing hyper-
surfaces {Σ+

i }. By Lemma 2.7, we get a convergent subsequence Σ+
ij

→ Σ+. Hence, we

get the absolutely area minimizing hypersurface Σ+ in Hn asymptotic to Γ. Similarly,
we get the absolutely area minimizing hypersurface Σ− in Hn asymptotic to Γ. Similar
arguments show that these absolutely area minimizing hypersurfaces Σ± are canonical by
their construction, i.e., independent of the choice of the sequence {Γ±

i } and {Σ±
i }.

Assume that Σ+ 6= Σ−, and they are not disjoint. Since these are absolutely area
minimizing hypersurfaces, nontrivial intersection implies some part of Σ− lies above Σ+.
Since Σ+ = limΣ+

ij
, Σ− must also intersect some Σ+

ij
for sufficiently large ij . However by

Lemma 4.2, Σ+
ij

is disjoint from Σ− as ∂∞Σ+
ij

= Γ+
ij

is disjoint from ∂∞Σ− = Γ. This is

a contradiction. This shows Σ+ and Σ− are disjoint.
Similar arguments show that Σ± are disjoint from any absolutely area minimizing

hypersurface Σ′ asymptotic to Γ. As the sequences of Σ+
i and Σ−

i form a barrier for
other absolutely area minimizing hypersurfaces asymptotic to Γ, any such absolutely area
minimizing hypersurface must lie in the region bounded by Σ+ and Σ− in Hn. This shows
that if Σ+ = Σ−, then there exists a unique absolutely area minimizing hypersurface
asymptotic to Γ.

12
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Remark 4.1. By above theorem and its proof, if Γ bounds more than one absolutely area
minimizing hypersurface, then there exists a canonical region NΓ in Hn asymptotic to Γ
such that NΓ is the region between the canonical absolutely area minimizing hypersurfaces
Σ+ and Σ−. Moreover, by using similar ideas to the proof of Lemma 3.2, one can show
that any absolutely area minimizing hypersurface in Hn asymptotic to Γ is in the region
NΓ.

Now, we can prove the main result of the paper.

Theorem 4.4. Let B be the space of connected, closed, orientable codimension-1 sub-

manifolds of Sn−1
∞ (Hn), and let B′ ⊂ B be the subspace containing the submanifolds of

Sn−1
∞ (Hn) bounding a unique absolutely area minimizing hypersurface in Hn. Then B′ is

dense in B with C0-topology.

Proof: Let B be the space of connected, closed, orientable codimension-1 submanifolds
of Sn−1

∞ (Hn) with C0-topology. Let Γ0 ∈ B be a locally flat (tame), closed submanifold
in Sn−1

∞ (Hn). Since Γ0 is a locally flat, closed, orientable submanifold, there exists a
small tubular neighborhood N(Γ0) of Γ0 in Sn−1

∞ (Hn), which is homeomorphic to Y × I
where Y is closed n − 1-dimensional manifold homeomorphic to Γ0 [18]. Then, we can
find a homeomorphism φ : Y × (−ǫ, ǫ) → N(Γ0) such that φ(Y × {0}) = Γ0. Then, let
φ(Y ×t) = Γt. Since φ is a homeomorphism, {Γt} foliates N(Γ0) with closed hypersurfaces
Γt. In other words, {Γt} are pairwise disjoint closed hypersurfaces in Sn−1

∞ (Hn), and
N(Γ0) =

⋃
t∈(−ǫ,ǫ) Γt.

By Lemma 4.1, N(Γ0) separates Sn−1
∞ (Hn) into two parts, say Ω+ and Ω−, i.e.,

Sn−1
∞ (Hn) = N(Γ0) ∪ Ω+ ∪ Ω−. Let p+ be a point in Ω+ and let p− be a point in

Ω− such that for a small δ, Bδ(p
±) are in the interior of Ω±. Let β be the geodesic in

Hn asymptotic to p+ and p−.
By Lemma 4.3 and Remark 4.1, for any Γt either there exists a unique absolutely area

minimizing hypersurface Σt in Hn, or there is a canonical region Nt in Hn asymptotic
to Γt, namely the region between the canonical absolutely area minimizing hypersurfaces
Σ+

t and Σ−
t . With abuse of notation, if Γt bounds a unique absolutely area minimizing

hypersurface Σt in Hn, define Nt = Σt as a degenerate canonical neighborhood for Γt.

Then, let N̂ = {Nt} be the collection of these degenerate and nondegenerate canonical
neighborhoods for t ∈ (−ǫ, ǫ). Clearly, degenerate neighborhood Nt means Γt bounds
a unique absolutely area minimizing hypersurface, and nondegenerate neighborhood Ns

means that Γs bounds more than one absolutely area minimizing hypersurface. Note that
by Lemma 4.2, all canonical neighborhoods in the collection are pairwise disjoint. On the
other hand, by Lemma 4.1, the geodesic β intersects all the canonical neighborhoods in

the collection N̂ .
We claim that the part of β which intersects N̂ is a finite line segment. Let P+ be

the geodesic hyperplane asymptotic to the round sphere ∂Bδ(p
+) in Ω+. Similarly, define

P−. By Lemma 4.2, P± are disjoint from the collection of canonical regions N̂ . Let

β ∩ P± = {q±}. Then the part of β which intersects N̂ is the line segment l ⊂ β with
endpoints q+ and q−. Let C be the length of this line segment l.

13
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Now, for each t ∈ (−ǫ, ǫ), we will assign a real number st ≥ 0. If there exists a unique
absolutely area minimizing hypersurface Σt for Γt (Nt is degenerate), then let st be 0.
If not, let It = β ∩ Nt, and st be the length of It. Clearly if Γt bounds more than one
least area plane (Nt is nondegenerate), then st > 0. Also, it is clear that for any t,
It ⊂ l and It ∩ Is = ∅ for any t 6= s. Then,

∑
t∈(−ǫ,ǫ) st < C where C is the length of

l. This means for only countably many t ∈ (−ǫ, ǫ), st > 0. So, there are only countably
many nondegenerate Nt for t ∈ (−ǫ, ǫ). Hence, for all other t, Nt is degenerate. This
means there exist uncountably many t ∈ (−ǫ, ǫ), where Γt bounds a unique absolutely
area minimizing hypersurface. Since Γ0 is locally flat, and locally flat embeddings are
dense in B, [3] (for n ≥ 5), [2] (for n = 4), [6] (for n = 3), this proves B′ is dense in B.

On the other hand, in dimension 3, the unique curves for absolutely area minimizing
surfaces are not only dense, but also a countable intersection of open dense subsets just
like the least area planes case.

Corollary 4.5. Let A be the space of simple closed curves in S2
∞(H3) and let A′ ⊂ A be

the subspace containing the simple closed curves in S2
∞(H3) bounding a unique absolutely

area minimizing surface in H3. Then, A′ is dense in A with respect to the C0-topology.

Indeed, A′ is a countable intersection of open dense subsets of A with respect to the

C0-topology.

Proof: By Theorem 4.4, we know that A′ is dense in A. Then by using the proof of
Claim 2 in Theorem 3.3 in this setting, it is clear that A′ is a countable intersection of
open dense subsets in A with C0-topology.

5. Nonuniqueness results

In this section, we will show that there exists a simple closed curve in S2
∞(H3) which

is the asymptotic boundary of more than one absolutely area minimizing surface in H3.
First, we need a lemma about the limits of absolutely area minimizing surfaces.

A short outline of the method is the following. We first construct a simple closed curve
Γ0 in S2

∞(H3) which is the asymptotic boundary of more than one minimal surface in
H3. Then, we foliate S2

∞(H3) with simple closed curves {Γt} where Γ0 is a leaf in the
foliation. We show that if each Γt bounds a unique absolutely area minimizing surface
Σt in H3, then the family of surfaces {Σt} must foliate the whole H3. However, since we
chose Γ0 to bound more than one minimal surface in H3, one of the surfaces must have
a tangential intersection with one of the leaves in the foliation. This contradicts to the
maximum principle for minimal surfaces.

Now, we quote a result on the existence of simple closed curves in S2
∞(H3) which are

the asymptotic boundaries of more than one minimal surface in H3.

Lemma 5.1. [5] There is a set ∆ of simple closed curves in S2
∞(H3) such that for any

Γ ∈ ∆, there exist infinitely many complete, smoothly embedded minimal surfaces in H3

asymptotic to Γ.

14
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Remark 5.1. Alternatively, one can construct simple closed curves in S2
∞(H3) bounding

more than one minimal surface in H3 as follows. By using the technique in [Ha], one can
construct a simple closed curve Γ in S2

∞(H3) such that the absolutely area minimizing
surface Σ asymptotic to Γ has positive genus (see Figure 3). Then, Σ separates H3 into
two parts Ω+ and Ω− which are both mean convex domains. Then by using Meeks-Yau’s
results in [19], one can get sequences of least area disks {D±

i } in Ω± whose boundaries
converge to Γ in S2

∞(H3). By taking the limit, one can get two least area planes P+ and
P− with ∂∞P± = Γ. We used Σ as a barrier to get distinct limits from the sequences
{D+

i } and {D−
i }. Note that the planes P± are least area just in Ω±. However, P± may

not be least area in H3, but of course, they are still minimal planes.

Theorem 5.2. There exists a simple closed curve Γ in S2
∞(H3) such that Γ bounds more

than one absolutely area minimizing surface {Σi} in H3, i.e., ∂∞Σi = Γ.

Proof: Assume that for any simple closed curve Γ in S2
∞(H3), there exists a unique

complete absolutely area minimizing surface Σ in H3 with ∂∞Σ = Γ. Let Γ0 be a simple
closed curve in S2

∞(H3) such that M1 and M2 are two distinct minimal surfaces in H3

asymptotic to Γ as in Lemma 5.1.
Now, foliate S2

∞(H3) by simple closed curves {Γt}−1≤t≤1 where Γ0 is a leaf in the
foliation. Note that, there are only two singular leaves {Γ−1,Γ1} in the foliation which are
points, and all other leaves are embedded simple closed curves in S2

∞(H3). By assumption,
for any Γt, there exists a unique absolutely area minimizing surface Σt in H3.

γ−

1

γ−

2

γ+

1
γ+

2
P+

1 P+

2

A+

Γ

Γ

Figure 3. Γ is a simple closed curve in S2
∞(H3). γ+

i and γ−
i are round

circles in S2
∞(H3) bounding the geodesic planes P+

i and P−
i in H3.
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We claim that {Σt} will be a foliation of H3. By Lemma 4.2, Σt ∩ Σs = ∅ for any
s 6= t. Hence, the only way to fail to be a foliation for {Σt} is to have a gap between two
leaves.

Now, assume that there is a gap between the leaves {Σt | t > s } and {Σt | t < s }.
This implies if we have sequences {Γt+

i
} and {Γt−

i
}, where t+i → s from positive side,

and t−i → s from negative side, then one of the sequences {Σt+
i
} and {Σt−

i
} has no

subsequences converging to Σs, because of the existence of the gap between the leaves
(Recall that we assume there is a unique absolutely area minimizing surface Σt with
∂∞Σt = Γt). However, this contradicts to Lemma 2.7. So, {Σt} will be a foliation of H3.

Now, by assumption, there are two distinct minimal surfaces M1 and M2 which are
asymptotic to Γ0. This implies at least one of these surfaces is not a leaf of the foliation,
say M2, and must intersect the leaves in the foliation nontrivially. Since {Σt} foliates
whole H3, this means M2 must intersect tangentially (lying in one side) one of the leaves
in the foliation. However, this contradicts to the maximum principle. So, one of the simple
closed curves in {Γt} must bound more than one absolutely area minimizing surface in
H3. The proof follows.

By using similar ideas, one can prove an analogous theorem for least area planes in
H3.

Theorem 5.3. There exists a simple closed curve Γ in S2
∞(H3) such that Γ bounds more

than one least area plane {Pi} in H3, i.e., ∂∞Pi = Γ.

Proof: The proof is completely analogous to the proof of the previous theorem. Again,
we start with the same foliation of S2

∞(H3) with simple closed curves {Γt} containing Γ0

which bounds more than one complete minimal surface in H3.
Assume that Pt is the unique least area plane in H3 with ∂∞Pt = Γt. Again, we claim

that {Pt} is a foliation of H3. By Lemma 3.1, Pt ∩ Ps = ∅ for any s 6= t. Hence, the only
way to fail to be a foliation for {Pt} is to have a gap between two leaves.

Now, assume that there is a gap between the leaves {Pt | t > s } and {Pt | t < s }.
This implies if we have sequences {Pt+

i
} and {Pt−

i
}, where t+i → s from positive side, and

t−i → s from negative side, then one of the sequences {Pt
+

i
} and {Pt

−

i
} has no subsequences

converging to Σs, because of the existence of the gap between the leaves (Recall that
we assume there is a unique absolutely area minimizing surface Σt with ∂∞Σt = Γt).
However, one can construct a sequence of least area disks {Dt

+

i
} where Dt

+

i
⊂ Pt

+

i
with

∂Dt+
i

→ Γs. By using Lemma 2.6, we get a subsequence with Dt+
ij

→ P+
s where P+

s

is a least area plane with ∂∞P+
s = Γs. Similarly, one can get a least area plane P−

s

with ∂∞P−
s = Γs . However, since there is a gap between the leaves, P+

s 6= P−
s . This

contradicts to the uniqueness assumption as Γs bounds unique least area plane. Also,
{Pt} fills H3 by the construction of {Γt}. Hence, this shows that {Pt} is a foliation of
H3.

16



Number of solutions to asymptotic Plateau problem

However, like in the proof of previous theorem, Γ0 bounds more than one complete
minimal surface, and at least one of them is not a leaf of the foliation, say M2. Hence, M2

must intersect tangentially (lying in one side) one of the leaves in the foliation. Again,
this contradicts to the maximum principle for minimal surfaces. The proof follows.

Remark 5.2. The same proof may not work for area minimizing surfaces in a specified
topological class. The problem is that Lemma 2.7 may not be true for this case as the
limiting surface might not be in the same topological class (the genus might drop in the
limit).

Remark 5.3. As the introduction suggests, there is no known example of a simple closed
curve of S2

∞(H3) with nonunique solution to the asymptotic Plateau problem. Unfortu-
nately, the results above show the existence of such an example, but they do not give
one. The main problem to find such an example is the noncompactness of the objects. In
compact case, the quantitative data enables you to find such examples like baseball curve
on a sphere, but in the asymptotic case the techniques do not work because of the lack of
the quantitative data. In other words, the explicit examples in compact case, like base-
ball curve on a sphere, are indeed area minimizing surfaces, and being able to compare
the areas of surfaces and symmetry enables one to show the baseball curve bounds two
different area minimizing disks in the ball. Even though the baseball curve γ in S2

∞(H3)
might be good candidate for a curve bounding two different least area planes in H3, it is
not easy to show that the least area plane bounding γ in S2

∞(H3) is fixed or not by the

involution of BH3 which is fixing γ without using the area tool like in the compact case.
To overcome this problem, it might be possible to employ the renormalized area defined
by Alexakis-Mazzeo in [1] in order to construct an explicit simple closed curve in S2

∞(H3)
bounding more than one absolutely area minimizing surface.

6. Concluding remarks

In this paper, we showed that the space of closed, codimension-1 submanifolds of
Sn−1
∞ (Hn) has a dense subspace of closed, codimension-1 submanifolds of Sn−1

∞ (Hn)
bounding a unique absolutely area minimizing hypersurface in Hn. As we discussed
in the introduction, Anderson showed this result for closed submanifolds bounding con-
vex domains in Sn−1

∞ (Hn) in [4]. Then, Hardt and Lin generalized this result to closed
submanifolds bounding star shaped domains in Sn−1

∞ (Hn) in [14]. These were the only
cases known so far. Hence, our results show that they are indeed very abundant.

The technique which we employ here is very general, and it applies to many different
settings of Plateau problem. In particular, it can naturally be generalized to the Gromov-
Hadamard spaces which is studied by Lang in [16], and it can be generalized to the mean
convex domains with spherical boundary which is studied by Lin in [17]. Generalizing this
technique in the context of constant mean curvature hypersurfaces in hyperbolic space also
gives similar results. On the other hand, they can also be applied in Gromov hyperbolic
3-spaces with cocompact metric where the author solved the asymptotic Plateau problem
[9].
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On the other hand, it was not known whether all closed codimension-1 submanifolds
in Sn−1

∞ (Hn) have a unique solution to the asymptotic Plateau problem or not. The
only known results about nonuniqueness also come from Anderson in [5]. He constructs
examples of simple closed curves in S2

∞(H3) bounding more than one complete mini-

mal surface in H3. These examples are also area minimizing in their topological class.
However, none of them are absolutely area minimizing, i.e., a solution to the asymptotic
Plateau problem. In Section 5, we prove the existence of simple closed curves in S2

∞(H3)
with nonunique solution to asymptotic Plateau problem, and hence, give an answer for
dimension 3. However, there is no result in higher dimensions yet. In other words, it is
not known whether there exist closed codimension-1 submanifolds in Sn−1

∞ (Hn) bounding
more than one absolutely area minimizing hypersurfaces or not for n > 3.

It might be possible to extend the techniques in this paper to address the nonuniqueness
question in higher dimensions. It is possible to use the technique in Remark 5.1 (Figure 3),
to get a codimension-1 sphere Γ0 in Sn−1

∞ (Hn) bounding an absolutely area minimizing
hypersurface Σ0 in Hn which is not a hyperplane. Like in the proof of Theorem 5.2,
by foliating Sn−1

∞ (Hn) by closed, codimension-1 submanifolds {Γt}, and by assuming
uniqueness of absolutely area minimizing hypersurfaces, one can get a foliation of Hn by
the absolutely area minimizing hypersurfaces {Σt} with ∂∞Σt = Γt. Let γ be a n − 2-
sphere in Σ0 which is “close” to Γ0. Then by using [23], one can get a compact area
minimizing hyperplane M whose boundary is γ. Hence by construction, M cannot be in
a leaf in the foliation {Σt}. Like in the proof of Theorem 5.2, it might be possible to get
a contradiction by studying the intersection of M with the foliation {Σt}.

Unfortunately, the maximum principle [20] does not work here since even though Σt

is absolutely area minimizing, M is not. Also, the maximum principles due to Solomon-
White [21] and Ilmanen [15] which are for stationary varifolds are not enough to get a
contradiction since the minimizing hyperplane M given by [23] might have codimension-1
singularities, while [21] and [15] works up to codimension-2 singularities. So, to get a
contradiction here, one needs a stronger maximum principle, or a more regular area min-
imizing hyperplane M .
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