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New symplectic 4-manifolds

with nonnegative signature

Anar Akhmedov and B. Doug Park

Abstract. We construct new families of symplectic 4-manifolds with nonnegative
signature that are interesting with respect to the geography problem. In particular, we

construct an irreducible symplectic 4-manifold that is homeomorphic to mCP2#mCP2

for each odd integer m satisfying m ≥ 49.

1. Introduction

The geography problem for simply connected symplectic 4-manifolds with negative
signature is fairly well understood. We refer the reader to the recent works [1, 3, 13]
for the current status. In stark contrast, the geography problem for simply connected
symplectic 4-manifolds with nonnegative signature is poorly understood. The existing
literature [12, 14, 15, 17, 18] are far from capturing all possible (χh, c2

1) coordinates, even
if we allow nontrivial fundamental groups.

In this paper, we construct several new families of symplectic 4-manifolds with positive
signature that can be used as building blocks for constructing simply connected symplectic
4-manifolds with nonnegative signature. As one such application, we construct simply
connected nonspin irreducible symplectic 4-manifolds with signature σ within the range
0 ≤ σ ≤ 4. These have the smallest Euler characteristics amongst all known simply
connected 4-manifolds with nonnegative signature which are currently known to possess
more than one smooth structure. The remaining cases corresponding to signature σ ≥ 5
are dealt with in the sequel [2].

Our paper is organized as follows. In Sections 2 and 3, we construct families of symplec-
tic 4-manifolds similar to H(n) in [4, 17] which lie slightly below the Bogomolov-Miyaoka-
Yau line, c2

1 = 9χh, using branched covering techniques. In Section 4, we construct two
simply connected irreducible symplectic 4-manifolds with positive signature which will
serve as useful building blocks. In Section 5, we construct families of simply connected
nonspin irreducible symplectic 4-manifolds with signature equal to 0, 1, 2, 3 or 4 having
relatively small Euler characteristics.
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2. First family with positive signature

Let g be a positive integer. Think of a closed genus g Riemann surface Σg as two
concentric spheres with g + 1 tubes connecting them. Consider an orientation-preserving
self-diffeomorphism γ : Σg → Σg which is the rotation of this surface by angle 2π

g+1
which

has 4 fixed points (the axis of rotation goes through two points on each sphere) and has
order g + 1. Given a positive integer i satisfying 1 ≤ i ≤ g + 1, let

Γi = graph(γi) = {(x, γi(x)) | x ∈ Σg} ⊂ Σg × Σg.

Since γg+1 = id, the graph Γg+1 is the diagonal of Σg × Σg.

Lemma 2.1. Let ω be a symplectic form on Σg, and let f : Σg → Σg be an orientation-

preserving self-diffeomorphism. Then the graph of f , {(x, f(x)) | x ∈ Σg} ⊂ Σg × Σg, is

a symplectic submanifold with respect to a product symplectic form ω̃ = pr∗1ω + pr∗2ω on

Σg × Σg, where prj : Σg × Σg → Σg is the projection map onto the j-th factor.

Proof. Consider the embedding h : Σg → Σg × Σg given by h(x) = (x, f(x)). It is
enough to show that h∗ω̃ is a positive multiple of ω. Given a point p ∈ Σg, choose local
coordinates (x1, x2) in a neighborhood U of p and (y1, y2) in a neighborhood V of f(p)
such that

ω|U = ξ(x1, x2) dx1 ∧ dx2,

ω|V = η(y1, y2) dy1 ∧ dy2,

where ξ and η are strictly positive functions defined on U and V , respectively. On the
graph of f , we have

(y1, y2) = f(x1, x2) = (f1(x1, x2), f2(x1, x2)).

It follows that

(h∗ω̃)|U = ξ dx1 ∧ dx2 + (η ◦ f) df1 ∧ df2

= ξ dx1 ∧ dx2 + (η ◦ f)

(

∂f1

∂x1

dx1 +
∂f1

∂x2

dx2

)

∧

(

∂f2

∂x1

dx1 +
∂f2

∂x2

dx2

)

= (ξ + (η ◦ f) det(Df)) dx1 ∧ dx2

=

(

1 +
(η ◦ f) det(Df)

ξ

)

ω|U ,

where Df = (∂fi/∂xj) denotes the 2 × 2 matrix of partial derivatives of f with respect
to the above coordinates. Since f is orientation-preserving, we always have det(Df) > 0.
Hence we have shown that h∗ω̃ is equal to some positive function times ω. �

Thus Γi is a symplectic submanifold of Σg×Σg with respect to ω̃ for each 1 ≤ i ≤ g+1.
We have [Γi]

2 = L(γi, γi) = deg(γi)e(Σg) = 2−2g for each 1 ≤ i ≤ g+1. (Here, L denotes
the Lefschetz coincidence number and e denotes the Euler characteristic.) Also note that
the graphs Γ1, . . . ,Γg+1 intersect at 4 points. If we blow up at these 4 intersection points,
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the proper transform B of the union Γ1 ∪ · · · ∪Γg+1 consists of g +1 disjoint surfaces and
its homology class is divisible by g + 1. If PD denotes the Poincaré duality isomorphism,
then

PD(c1((Σg × Σg)#4CP
2)) = −2(g − 1)

(

[Σg × {pt}] + [{pt′} × Σg]
)

−

4
∑

j=1

[Ej ],

where Ej is the exceptional sphere of the j-th blow-up for j = 1, . . . , 4. The homology

class of B in H2((Σg × Σg)#4CP
2; Z) is given by

[B] = (g + 1)
(

[Σg × {pt}] + [{pt′} × Σg] −
4

∑

j=1

[Ej ]
)

.

Let Xg be the (g + 1)-fold branched cover of (Σg × Σg)#4CP
2 branched along this

proper transform B. Using formulas in Section 7.1 of [8], we compute that

e(Xg) = (g + 1)e((Σg × Σg)#4CP
2) − g(g + 1)e(Σg)

= 2(g + 1)(3g2 − 5g + 4),

c2
1(Xg) = (g + 1)

(

c1((Σg × Σg)#4CP
2) −

g

g + 1
[B]

)2

= 2(g + 1)(7g2 − 8g + 2),

σ(Xg) =
c2
1(Xg) − 2e(Xg)

3
=

2

3
(g + 1)(g2 + 2g − 6),

χh(Xg) =
e(Xg) + σ(Xg)

4
=

1

6
(g + 1)(10g2 − 13g + 6).

Consequently, we have

lim
g→∞

c2
1(Xg)

χh(Xg)
=

84

10
.

Table 1 lists the characteristic numbers of Xg when 1 ≤ g ≤ 10.

Table 1

g 1 2 3 4 5 6 7 8 9 10

e(Xg) 8 36 128 320 648 1148 1856 2808 4040 5588

σ(Xg) −4 4 24 60 116 196 304 444 620 836

χh(Xg) 1 10 38 95 191 336 540 813 1165 1606

c2
1(Xg) 4 84 328 820 1644 2884 4624 6948 9940 13684
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As explained in Section 2 of [17], the composition of maps

Xg −→ (Σg × Σg)#4CP
2 −→ Σg × Σg

pr
1−→ Σg (1)

gives a Lefschetz fibration of Xg over Σg. Here, pr1 denotes the projection onto the
first factor. A regular fiber of this fibration is a cyclic (g + 1)-fold cover of Σg branched
over g + 1 points. Thus a regular fiber is a surface of genus 1

2
g(3g + 1). The proper

transform of each graph Γi gives rise to a section of (1) whose image is a genus g surface
of self-intersection −2.

For each positive integer n ≥ 2, let ϕn : Σk → Σg be an n-fold unbranched covering of
Σg, where k = n(g−1)+1. Let Xg(n) denote the total space of the pull back of fibration
(1) via ϕn. A regular fiber of Xg(n) → Σk is again a surface of genus 1

2
g(3g+1). The new

fibration has a section whose image is a genus k surface of self-intersection −2n. Since
Xg(n) can be viewed as an n-fold unbranched cover of Xg, we have e(Xg(n)) = n · e(Xg),
σ(Xg(n)) = n · σ(Xg), χh(Xg(n)) = n · χh(Xg), and c2

1(Xg(n)) = n · c2
1(Xg).

As in Section 2 of [18], we can also pull back the branched covering

Xg −→ (Σg × Σg)#4CP
2 −→ Σg × Σg

via the map ϕn × ϕn : Σk × Σk → Σg × Σg, and obtain a new symplectic 4-manifold

X̃g(n
2), which is a (g + 1)-fold branched cover of Σk × Σk and an n2-fold unbranched

cover of Xg. The composition

X̃g(n
2) −→ Σk × Σk

pr
1−→ Σk

gives a new Lefschetz fibration whose regular fiber has genus 1 + 1
2
n(g + 1)(3g − 2). This

fibration has a section whose image is a genus k surface of self-intersection −2n. We
have e(X̃g(n

2)) = n2 · e(Xg), σ(X̃g(n
2)) = n2 · σ(Xg), χh(X̃g(n

2)) = n2 · χh(Xg), and

c2
1(X̃g(n

2)) = n2 · c2
1(Xg).

For the applications in Sections 4 and 5, we will only need the symplectic 4-manifold
X2. The other symplectic 4-manifolds that were constructed in this section are used in
the sequel [2] to construct simply connected symplectic 4-manifolds with signature σ ≥ 5.

3. Second family with positive signature

Let g be a positive integer. As in Exercise IV.5.6 of [11], we can think of the genus g
surface Σg as a 4g-gon with diametrically opposite edges identified so that the word given
by the boundary of the 4g-gon is

a1a2 · · · a2ga
−1
1 a−1

2 · · · a−1
2g .

Divide this 4g-gon into two (2g + 1)-gons by cutting along a diagonal d such that the
boundaries of the resulting two (2g + 1)-gons give the words

a1a2 · · · a2gd and a−1
1 a−1

2 · · · a−1
2g d−1.

Viewing each (2g + 1)-gon as a regular polygon, we can rotate each (2g + 1)-gon by
angle 2π

2g+1
, and then reglue them to obtain an orientation-preserving self-diffeomorphism
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δ : Σg → Σg of order 2g + 1 with 3 fixed points. For 1 ≤ i ≤ 2g + 1, let ∆i be
graph(δi) ⊂ Σg × Σg. As in Section 2, [∆i]

2 = 2 − 2g for 1 ≤ i ≤ 2g + 1, and each ∆i is
a symplectic submanifold of Σg × Σg, which is equipped with a product symplectic form
pr∗1ω + pr∗2ω. Note that ∆1, . . . ,∆2g+1 intersect in 3 points. If we blow up at these 3
points, the homology class of the proper transform D of the union ∆1 ∪ · · · ∪ ∆2g+1 will

be divisible by 2g + 1. Let Zg be the (2g + 1)-fold branched cover of (Σg × Σg)#3CP
2

branched along the proper transform D. We compute that

e(Zg) = (2g + 1)e((Σg × Σg)#3CP
2) − 2g(2g + 1)e(Σg)

= (2g + 1)(8g2 − 12g + 7),

c2
1(Zg) = (2g + 1)

(

c1((Σg × Σg)#3CP
2) −

2g

2g + 1
[D]

)2

= 5(2g + 1)(4g2 − 4g + 1),

σ(Zg) =
c2
1(Zg) − 2e(Zg)

3
=

1

3
(2g + 1)(4g2 + 4g − 9),

χh(Zg) =
e(Zg) + σ(Zg)

4
=

1

3
(2g + 1)(7g2 − 8g + 3).

We conclude that

lim
g→∞

c2
1(Zg)

χh(Zg)
=

60

7
≈ 8.571428571.

Table 2 lists the characteristic numbers of Zg when 1 ≤ g ≤ 10.

Table 2

g 1 2 3 4 5 6 7 8 9 10

e(Zg) 9 75 301 783 1617 2899 4725 7191 10393 14427

σ(Zg) −1 25 91 213 407 689 1075 1581 2223 3017

χh(Zg) 2 25 98 249 506 897 1450 2193 3154 4361

c2
1(Zg) 15 225 875 2205 4455 7865 12675 19125 27455 37905

When g = 2, we obtain the 4-manifold H(1) on the BMY line in [17]. The g = 1 case
is also interesting in terms of the geography of small 4-manifolds. It is obtained from
(T 2 × T 2)#3CP

2 by taking a 3-fold branched cover.
As in Section 2, there is a Lefschetz fibration

Zg −→ (Σg × Σg)#3CP
2 −→ Σg × Σg

pr
1−→ Σg. (2)
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A regular fiber of this fibration is a (2g + 1)-fold cover of Σg branched over 2g + 1 points.
Hence a regular fiber is a surface of genus 4g2. The proper transform of each graph ∆i

gives rise to a section of (2) whose image is a genus g surface of self-intersection −1.
By pulling back (2) via the unbranched covering ϕn : Σk → Σg as in Section 2, we

obtain a new Lefschetz fibration Zg(n) → Σk, where k = n(g − 1) + 1. A regular fiber
is a genus 4g2 surface and there is a genus k section of self-intersection −n. We have
e(Zg(n)) = n · e(Zg), σ(Zg(n)) = n · σ(Zg), χh(Zg(n)) = n · χh(Zg), and c2

1(Zg(n)) =
n · c2

1(Zg).

As in Section 2, we can also construct a family of symplectic 4-manifolds Z̃g(n
2)

satisfying e(Z̃g(n
2)) = n2 · e(Zg), σ(Z̃g(n

2)) = n2 · σ(Zg), χh(Z̃g(n
2)) = n2 · χh(Zg),

and c2
1(Z̃g(n

2)) = n2 · c2
1(Zg). There exists a Lefschetz fibration Z̃g(n

2) → Σk whose
regular fiber has genus 1+n(4g2−1). This fibration has a section whose image is a genus
k surface of self-intersection −n.

The symplectic 4-manifolds Zg(n) and Z̃g(n
2) will be useful in the sequel [2] when we

construct simply connected symplectic 4-manifolds with signature σ ≥ 5.

4. Simply connected building blocks

The goal of this section is to prove that there exist exotic irreducible smooth structures
on 47CP

2#45CP
2 and 51CP

2#47CP
2.

Theorem 4.1. There exists a closed simply connected minimal symplectic 4-manifold M
such that e(M) = 94 and σ(M) = 2. Moreover, M contains a symplectic torus T with

self-intersection 0 satisfying π1(M \ T ) = 1.

Proof. Our 4-manifold M will be a symplectic sum (cf. [7]) of two symplectic 4-manifolds
along genus 9 surfaces of self-intersection 0. Let X2 be the symplectic 4-manifold that we
constructed in Section 2. Recall that X2 is the total space of a genus 7 Lefschetz fibration
over a genus 2 surface. Also recall that this Lefschetz fibration has a section whose image
has self-intersection −2 in X2. Thus we may take a regular fiber and a section and then
symplectically resolve their intersection to obtain a genus 9 symplectic surface Σ′

9 ⊂ X2

with self-intersection 0.
Next let Y7(1) be the minimal symplectic 4-manifold constructed in Section 2 of [3].

Recall from [3] that Y7(1) has the same cohomology ring as the connected sum 11(S2×S2)
and that Y7(1) is obtained from Σ2×Σ7 by performing 18 Luttinger surgeries. As observed
in [3], the geometrically dual symplectic surfaces Σ2 × {pt} and {pt′} × Σ7 in Σ2 × Σ7

descend to geometrically dual symplectic surfaces in Y7(1). If we symplectically resolve
the intersection between these two surfaces, then we obtain a genus 9 symplectic surface
of self-intersection 2 in Y7(1). Symplectically blowing up twice, we obtain a genus 9
symplectic surface Σ′′

9 of self-intersection 0 in Y7(1)#2CP
2.

Now let M be the symplectic sum X2#Σ′

9
=Σ′′

9
(Y7(1)#2CP

2). We compute that

e(M) = e(X2) + e(Y7(1)#2CP
2) − 2e(Σ9) = 36 + 26 − 2(−16) = 94,

σ(M) = σ(X2) + σ(Y7(1)#2CP
2) = 4 − 2 = 2.
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Since X2 is a relatively minimal Lefschetz fibration over a surface of positive genus, X2 is
minimal by Theorem 1.4 in [19]. Also note that the pair (Y7(1)#2CP

2,Σ′′
9) is a relatively

minimal pair by Corollary 3 in [10]. It now follows from Usher’s theorem in [20] that the
symplectic sum M is minimal.

To prove π1(M) = 1, we proceed as follows. First the long exact homotopy sequence of
a fibration (cf. Proposition 8.1.9 in [8]) implies that the inclusion induced homomorphism
π1(Σ

′
9) → π1(X2) is surjective. Since the exceptional sphere of a blow-up intersects Σ′′

9

once transversally, any meridian of Σ′′
9 is nullhomotopic in the complement of a tubular

neighborhood νΣ′′
9 . Hence we conclude that

π1

(

(Y7(1)#2CP
2) \ νΣ′′

9

)

= π1(Y7(1)#2CP
2) = π1(Y7(1)).

Next we choose standard presentations

π1(Σ2 × {pt}) = 〈a1, b1, a2, b2 | [a1, b1][a2, b2] = 1〉,

π1({pt′} × Σ7) = 〈c1, d1, . . . , c7, d7 |

7
∏

j=1

[cj , dj ] = 1〉.

From [3], we know that the inclusion induced homomorphism

π1

(

(Σ2 × {pt}) ∪ ({pt′} × Σ7)
)

−→ π1(Y7(1)) (3)

is also surjective. Moreover, we also know that π1(Y7(1))/〈α〉 = 1, where α is the image
of any one of the generators c1, d1, c2, d2 of π1({pt′} × Σ7) under homomorphism (3).

Let (Σ′
9)

‖ and (Σ′′
9)‖ denote parallel copies of Σ′

9 and Σ′′
9 in the boundaries ∂(νΣ′

9)
and ∂(νΣ′′

9), respectively. When forming the symplectic sum M , we choose the gluing
diffeomorphism such that α, viewed as an element of π1((Σ

′′
9)‖), is mapped to an element

of π1((Σ
′
9)

‖) that is represented by a non-separating vanishing cycle in the fiber of the
Lefschetz fibration X2 → Σ2. Thus α = 1 in π1(M), which then implies that the inclusion
induced homomorphism

π1

(

(Y7(1)#2CP
2) \ νΣ′′

9

)

−→ π1(M) (4)

is trivial. Note that the inclusion induced homomorphism π1((Σ
′
9)

‖) → π1(M) is also
trivial since it can be factored through homomorphism (4) after (Σ′

9)
‖ is identified with

(Σ′′
9)‖. The meridians of Σ′

9 are also trivial in π1(M) because they are identified with the
meridians of Σ′′

9 , which are trivial. It follows that the inclusion induced homomorphism
π1(X2\νΣ′

9) → π1(M) is trivial as well, and by Seifert-Van Kampen theorem, we conclude
that π1(M) = 1.

Finally, note that Y7(1) contains 10 pairs of geometrically dual Lagrangian tori. The
images of these 20 tori in the blow-up Y7(1)#2CP

2 are disjoint from Σ′′
9 , and thus they

lie in M . Let T denote one of these 20 Lagrangian tori. By perturbing the symplectic
form on M , we can turn T into a symplectic submanifold of M .

To show π1(M \ T ) = 1, it will be convenient to fix T , say T = a′
1 × c′′3 . Here, a′

1 and
c′′3 are parallel copies of a1 and c3 as defined in [5]. Then π1(M \T ) is normally generated
by meridians of T , which are all conjugate to the commutator [b−1

1 , d3]. Note that the
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generators b1 and d3 are still trivial in π1(M \ T ) since the Luttinger surgery relations in
Section 2 of [3] still hold true in π1(M \ T ). It follows that meridians of T are trivial and
hence π1(M \ T ) = 1. �

Theorem 4.2. There exists a closed simply connected minimal symplectic 4-manifold N
such that e(N) = 100 and σ(N) = 4. Moreover, N contains a symplectic torus T̃ with

self-intersection 0 satisfying π1(N \ T̃ ) = 1.

Proof. Let Y9(1) be the minimal symplectic 4-manifold constructed in Section 2 of [3].
Y9(1) has the same cohomology ring as the connected sum 15(S2 × S2), and Y9(1) is
obtained from Σ2×Σ9 by performing 22 Luttinger surgeries. The symplectic submanifold
{pt′}×Σ9 ⊂ Σ2×Σ9 descends to a symplectic submanifold of self-intersection 0 in Y9(1),
which we will denote by Σ9.

Let Σ′
9 ⊂ X2 be the genus 9 symplectic submanifold of self-intersection 0 in the proof

of Theorem 4.1. Let N be the symplectic sum X2#Σ′

9
=Σ9

Y9(1). Usher’s theorem (cf. [20])
again implies that N is minimal. We compute that

e(N) = e(X2) + e(Y9(1)) − 2e(Σ9) = 36 + 32 − 2(−16) = 100,

σ(N) = σ(X2) + σ(Y9(1)) = 4 + 0 = 4.

To prove π1(N) = 1, first choose a standard presentation

π1(Σ9) = 〈c1, d1, . . . , c9, d9 |

9
∏

j=1

[cj , dj ] = 1〉.

From [3], we know that π1(Y9(1))/〈α〉 = 1, where α is the image of any one of the four
generators c1, d1, c2, d2 of π1(Σ9) under the homomorphism π1(Σ9) → π1(Y9(1)) induced
by inclusion. We also know that a meridian of Σ9 is conjugate to the image of [a1, b1][a2, b2]
in π1(Y9(1) \ νΣ9), where ai, bi (i = 1, 2) are the standard generators of π1(Σ2 × {pt}).
Since α = 1 implies ai = bi = 1 (i = 1, 2), we deduce that π1(Y9(1) \ νΣ9)/〈α〉 = 1.

When forming the symplectic sum N , we choose the gluing diffeomorphism such that α,

viewed as an element of π1(Σ
‖
9), is mapped to an element of π1((Σ

′
9)

‖) that is represented
by a non-separating vanishing cycle in the fiber of the Lefschetz fibration X2 → Σ2. Thus
α = 1 in π1(N), which then implies that the inclusion induced homomorphism

π1(Y9(1) \ νΣ9) −→ π1(N) (5)

is trivial. Note that the inclusion induced homomorphism π1((Σ
′
9)

‖) → π1(N) is also
trivial since it can be factored through homomorphism (5) after (Σ′

9)
‖ is identified with

Σ
‖
9. The meridians of Σ′

9 are also trivial in π1(N) because they are identified with the
meridians of Σ9, which are trivial. It follows that the inclusion induced homomorphism
π1(X2\νΣ′

9) → π1(N) is trivial as well, and by Seifert-Van Kampen theorem, we conclude
that π1(N) = 1.

Finally, note that Y9(1) contains 14 pairs of geometrically dual Lagrangian tori that

are all disjoint from Σ9. Let T̃ denote one of these 28 Lagrangian tori, say a′
1 × c′′3 .
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By perturbing the symplectic form on N , we can turn T̃ into a symplectic submanifold
of N . We can deduce that π1(N \ T̃ ) = 1 in exactly the same way as in the proof of
Theorem 4.1. �

By Rohlin’s theorem (cf. [16]), M and N must have odd intersection form since
their signatures are not divisible by 16. Hence by Freedman’s classification theorem for
simply connected topological 4-manifolds (cf. [6]), M and N must be homeomorphic to
47CP

2#45CP
2 and 51CP

2#47CP
2, respectively.

Remark 4.3. Note that a simply connected minimal symplectic 4-manifold is always
irreducible (cf. [9]). By replacing Y7(1) in the construction of M with Y7(m) for posi-
tive integers m ≥ 2 (cf. [3]), we obtain an infinite family of pairwise non-diffeomorphic
irreducible non-symplectic 4-manifolds that are homeomorphic to 47CP

2#45CP
2.

Similarly, replacing Y9(1) in the construction of N with Y9(m) gives an infinite fam-
ily of pairwise non-diffeomorphic irreducible non-symplectic 4-manifolds homeomorphic
to 51CP

2#47CP
2.

5. Nonspin 4-manifolds with nonnegative signature

In this section, we use the two simply connected symplectic 4-manifolds constructed in
Section 4 to build infinite families of other examples. For convenience we introduce the
following definition.

Definition 5.1. Let X be a smooth 4-manifold. We say that X has ∞-property if there
exist an irreducible symplectic 4-manifold and infinitely many pairwise non-diffeomorphic
irreducible non-symplectic 4-manifolds, all of which are homeomorphic to X.

Remark 4.3 says that 47CP
2#45CP

2 and 51CP
2#47CP

2 both have ∞-property. Recall
from [1] that mCP

2#mCP
2 has ∞-property for m odd and m ≥ 91. We also recall

Theorem 2 in [3] which is restated below.

Theorem 5.2 (cf. [3]). Let X be a closed symplectic 4-manifold and suppose that X con-

tains a symplectic torus T of self-intersection 0 such that the homomorphism

π1(T ) → π1(X) induced by the inclusion is trivial. Then for any pair (χ, c) of non-

negative integers satisfying

0 ≤ c ≤ 8χ − 1, (6)

there exists a symplectic 4-manifold Y with π1(Y ) = π1(X),

χh(Y ) = χh(X) + χ and c2
1(Y ) = c2

1(X) + c.

Moreover, Y has an odd indefinite intersection form, and if X is minimal then Y is

minimal as well. �

A brief synopsis of the proof of Theorem 5.2 is as follows. For each pair of nonnegative
integers (χ, c) satisfying (6), [1] and [3] explicitly construct an odd minimal symplectic
4-manifold W with χh(W ) = χ, c2

1(W ) = c, and a symplectic torus T ′ ⊂ W of self-
intersection 0. Our Y is then the symplectic sum X#T=T ′W .
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If we strengthen the hypothesis of Theorem 5.2 a bit, then we can add the line c = 8χ
to wedge-like region (6).

Theorem 5.3. Let X be a closed symplectic 4-manifold that contains a symplectic torus

T of self-intersection 0. Let νT be a tubular neighborhood of T and ∂(νT ) its boundary.

Suppose that the homomorphism π1(∂(νT )) → π1(X \ νT ) induced by the inclusion is

trivial. Then for any pair of integers (χ, c) satisfying

χ ≥ 1 and 0 ≤ c ≤ 8χ, (7)

there exists a symplectic 4-manifold Y with π1(Y ) = π1(X),

χh(Y ) = χh(X) + χ and c2
1(Y ) = c2

1(X) + c.

Moreover, if X is minimal then Y is minimal as well. If c < 8χ, or if c = 8χ and X
has an odd intersection form, then the corresponding Y has an odd indefinite intersection

form.

Proof. In light of Theorem 5.2, it only remains to check the case when c = 8χ and χ ≥ 1.
For each integer χ ≥ 1, it will be enough to exhibit a closed symplectic 4-manifold W
having the following properties.

(i) χh(W ) = χ and c2
1(W ) = 8χ.

(ii) W contains a symplectic torus T ′ of self-intersection 0 such that the complement
W \ T ′ does not contain any symplectic sphere of self-intersection −1.

(iii) π1(W \ νT ′)/K = 1, where K is the normal subgroup of π1(W \ νT ′) that is
generated by the image of the homomorphism π1(∂(νT ′)) → π1(W \νT ′) induced
by the inclusion.

The desired 4-manifold Y is then the symplectic sum X#T=T ′W . An easy application
of Seifert-Van Kampen theorem gives us π1(Y ) = π1(X \ νT ) = π1(X). The minimality
of Y follows from the minimality of X by Usher’s theorem in [20]. Other properties of Y
can also be immediately verified.

Now we proceed to the construction of W . Given a positive integer χ, consider the
closed minimal symplectic 4-manifold Yχ+1(1) that was constructed in Section 2 of [3].
Recall that Yχ+1(1) is obtained from the cartesian product Σ2 × Σχ+1 by performing
2χ + 6 Luttinger surgeries. If we choose not to perform one of these 2χ + 6 Luttinger
surgeries, i.e. we only perform 2χ+5 Luttinger surgeries on Σ2×Σχ+1, then the resulting
symplectic 4-manifold W is still minimal and satisfies

χh(W ) = χh(Yχ+1(1)) = χ and c2
1(W ) = c2

1(Yχ+1(1)) = 8χ.

For concreteness, suppose that we do not perform (a′
1 × c′1, a

′
1,−1) Luttinger surgery in

[3]. This means that the Luttinger surgery relation a1 = [b−1
1 , d−1

1 ] no longer holds in
π1(W ). We let T ′ = a′

1 × c′1. By perturbing the symplectic form on W , we can turn
the Lagrangian torus a′

1 × c′1 into a symplectic submanifold. Inside the quotient group
π1(W \ νT ′)/K, the images of the generators a1 and c1 are trivial. Combined with the
remaining Luttinger relations from [3], which continue to hold in π1(W \ νT ′)/K, this

10
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implies that the images of all other generators of π1(W \ νT ′) are trivial in the quotient
group. �

The following corollary gives infinitely many irreducible smooth structures on a large
class of simply connected nonspin 4-manifolds with signature σ = 0, 1, 2.

Corollary 5.4. Let m be an odd positive integer. If m ≥ 49, then mCP
2#mCP

2

and mCP
2#(m − 1)CP

2 have ∞-property. If m ≥ 47, then mCP
2#(m − 2)CP

2 has

∞-property.

Proof. From Remark 4.3, we already know that 47CP
2#45CP

2 has ∞-property. We apply
Theorem 5.3 to the symplectic 4-manifold M in Theorem 4.1. Since χh(M) = 24 and
c2
1(M) = 194, we obtain a simply connected minimal symplectic 4-manifold Y satisfying

χh(Y ) = χ + 24 and c2
1(Y ) = c + 194. By Freedman’s theorem (cf. [6]), such Y is

homeomorphic to (2χ + 47)CP
2#(10χ − c + 45)CP

2. By setting

c = 8χ − s, where s ∈ {0, 1, 2},

in (7), we obtain a simply connected minimal symplectic 4-manifold Y that is homeomor-
phic to

(2χ + 47)CP
2#(2χ + 45 + s)CP

2

for each integer χ ≥ 1. Simply connected minimal symplectic 4-manifolds are also ir-
reducible ([9]). By performing surgeries along a nullhomologous torus in Y as in [5]
(cf. Remark 4.3), we obtain infinite families of pairwise non-diffeomorphic irreducible
non-symplectic 4-manifolds homeomorphic to (2χ + 47)CP

2#(2χ + 45 + s)CP
2. �

The next corollary gives infinitely many irreducible smooth structures on a large class
of simply connected nonspin 4-manifolds with signature σ = 3, 4.

Corollary 5.5. Let m be an odd positive integer. If m ≥ 53, then mCP
2#(m − 3)CP

2

has ∞-property. If m ≥ 51, then mCP
2#(m − 4)CP

2 has ∞-property.

Proof. From Remark 4.3, we already know that 51CP
2#47CP

2 has ∞-property. We now
apply Theorem 5.3 to the symplectic 4-manifold N in Theorem 4.2. Since χh(N) = 26 and
c2
1(N) = 212, we obtain a simply connected minimal symplectic 4-manifold Y satisfying

χh(Y ) = χ + 26 and c2
1(Y ) = c + 212. By Freedman’s theorem, such Y is homeomorphic

to (2χ + 51)CP
2#(10χ − c + 47)CP

2. By setting

c = 8χ − s, where s ∈ {0, 1}, (8)

in (7), we obtain a simply connected minimal symplectic 4-manifold Y that is homeomor-
phic to

(2χ + 51)CP
2#(2χ + 47 + s)CP

2

for each integer χ ≥ 1. The rest of the proof goes exactly the same way as the proof of
Corollary 5.4. �
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Remark 5.6. In the proof of Corollary 5.5, if we take s ∈ {2, 3, 4} in (8) instead, we
obtain infinitely many irreducible smooth structures on

mCP
2#(m − 2)CP

2, mCP
2#(m − 1)CP

2 or mCP
2#mCP

2,

respectively, for each odd integer m ≥ 53. At this moment, the authors do not know
whether these exotic 4-manifolds are diffeomorphic to the corresponding 4-manifolds that
were constructed in the proof of Corollary 5.4.
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