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New symplectic 4-manifolds
with nonnegative signature

Anar Akhmedov and B. Doug Park

ABSTRACT. We construct new families of symplectic 4-manifolds with nonnegative
signature that are interesting with respect to the geography problem. In particular, we
construct an irreducible symplectic 4-manifold that is homeomorphic to mCP2#mCP2
for each odd integer m satisfying m > 49.

1. Introduction

The geography problem for simply connected symplectic 4-manifolds with negative
signature is fairly well understood. We refer the reader to the recent works [1, 3, 13]
for the current status. In stark contrast, the geography problem for simply connected
symplectic 4-manifolds with nonnegative signature is poorly understood. The existing
literature [12, 14, 15, 17, 18] are far from capturing all possible (x4, c?) coordinates, even
if we allow nontrivial fundamental groups.

In this paper, we construct several new families of symplectic 4-manifolds with positive
signature that can be used as building blocks for constructing simply connected symplectic
4-manifolds with nonnegative signature. As one such application, we construct simply
connected nonspin irreducible symplectic 4-manifolds with signature o within the range
0 < 0 < 4. These have the smallest Euler characteristics amongst all known simply
connected 4-manifolds with nonnegative signature which are currently known to possess
more than one smooth structure. The remaining cases corresponding to signature o > 5
are dealt with in the sequel [2].

Our paper is organized as follows. In Sections 2 and 3, we construct families of symplec-
tic 4-manifolds similar to H(n) in [4, 17] which lie slightly below the Bogomolov-Miyaoka-
Yau line, ¢? = 9x3, using branched covering techniques. In Section 4, we construct two
simply connected irreducible symplectic 4-manifolds with positive signature which will
serve as useful building blocks. In Section 5, we construct families of simply connected
nonspin irreducible symplectic 4-manifolds with signature equal to 0, 1, 2, 3 or 4 having
relatively small Euler characteristics.
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2. First family with positive signature

Let g be a positive integer. Think of a closed genus g Riemann surface ¥, as two
concentric spheres with g + 1 tubes connecting them. Consider an orientation- preserving
self-diffeomorphism v : ¥, — X, which is the rotation of this surface by angle ” which
has 4 fixed points (the axis of rotation goes through two points on each sphere) and has
order g + 1. Given a positive integer ¢ satisfying 1 <i < g+ 1, let

I; = graph(y') = {(2,7'(z)) |z € By} C By x By

Since v97! = id, the graph T'g,; is the diagonal of 3, x X,.

Lemma 2.1. Let w be a symplectic form on 3,4, and let f : X, — X4 be an orientation-
preserving self-diffeomorphism. Then the graph of f, {(z, f(z)) | x € £4} C Xy x Xy, is
a symplectic submanifold with respect to a product symplectic form @ = priw + priw on
g x By, where prj : Xy x Xy — ¥y is the projection map onto the j-th factor.

Proof. Consider the embedding h : £, — X, x X, given by h(z) = (z, f(z)). It is
enough to show that h*& is a positive multiple of w. Given a point p € ¥, choose local

coordinates (z1,z2) in a neighborhood U of p and (y1,y2) in a neighborhood V of f(p)
such that

w|U = §($1,5E2)dx1 /\d.’EQ7
W|V = n(yl, y2) dyl A dyg,

where & and 7 are strictly positive functions defined on U and V', respectively. On the
graph of f, we have

(Y1, 92) = f(x1,22) = (f1(®1, 72), f2(71, 72)).
It follows that
(h*(:))lU = fditl Ndzoy + (nof) df1 /\df2

= (4 (o f)det(Df))dry A dwz

~ (14 204D,

where Df = (0f;/0x;) denotes the 2 x 2 matrix of partial derivatives of f with respect
to the above coordinates. Since f is orientation-preserving, we always have det(Df) > 0.
Hence we have shown that h*@ is equal to some positive function times w. O

Thus I'; is a symplectic submanifold of ¥, x 2, with respect to @ for each 1 <7 < g+1.
We have [[;]? = L(v,~") = deg(v")e(Z,) = 2—2¢ for each 1 < i < g+1. (Here, L denotes
the Lefschetz coincidence number and e denotes the Euler characteristic.) Also note that
the graphs I'y, ..., 'y intersect at 4 points. If we blow up at these 4 intersection points,
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the proper transform B of the union I'y U---UI'y4; consists of g + 1 disjoint surfaces and
its homology class is divisible by g + 1. If PD denotes the Poincaré duality isomorphism,
then
o 4
PD(c1((Sg x 59)#4CP%)) = —2(g — 1)([Sg x {pt}] + [{pt'} x Zy]) = D [E}],
j=1
where Ej; is the exceptional sphere of the j-th blow-up for j = 1,...,4. The homology
class of B in Ha((Z, x ¥,)#4CP?;Z) is given by
Ej)).
j=1

Let X, be the (g + 1)-fold branched cover of (3, x ¥,)#4CP? branched along this
proper transform B. Using formulas in Section 7.1 of [8], we compute that

[B] = (g+1)([Zy x {pt}] + [{pt'} x Ty]

-

e(Xy) = (9+1De((Bg x Bg)#4CP?) — g(g + 1)e(y)
= 2(g+1)(3¢° — 59 +4),
A(X,) = (g+1) (cl (g X 4)#4CP?) — 9%[1’3])2
= 2(g+1)(T¢> — 89 +2),
ox,) = AEDZ2R) 2200,
E(Xg)+U(Xg)

Xh (Xg)

1
, :6(g+1)(10g2—13g—|—6).

Consequently, we have
im C%(Xg) _ %
g=o0 Xn(Xy) 10

Table 1 lists the characteristic numbers of X, when 1 < g < 10.

TABLE 1

e(X,) | 8 |36]128|320 | 648 | 1148 | 1856 | 2808 | 4040 | 5588
o(X,) | —4] 4| 24|60 | 116 | 196 | 304 | 444 | 620 | 836
xn(X) | 1 |10] 38 | 95 | 191 | 336 | 540 | 813 | 1165 | 1606
A(X,) | 4 | 84328820 | 1644 | 2884 | 4624 | 6948 | 9940 | 13684




AKHMEDOV and PARK

As explained in Section 2 of [17], the composition of maps
X, — (B X £,)#4CP? — ¥, x 5, 25 5, (1)

gives a Lefschetz fibration of X, over ¥,. Here, pr; denotes the projection onto the
first factor. A regular fiber of this fibration is a cyclic (g + 1)-fold cover of ¥, branched
over g + 1 points. Thus a regular fiber is a surface of genus %9(39 + 1). The proper
transform of each graph T'; gives rise to a section of (1) whose image is a genus g surface
of self-intersection —2.

For each positive integer n > 2, let ¢,, : ¥ — 3, be an n-fold unbranched covering of
Y4, where k = n(g—1)+1. Let X4(n) denote the total space of the pull back of fibration
(1) via ¢p,. A regular fiber of X4(n) — ¥y is again a surface of genus 3g(3g+1). The new
fibration has a section whose image is a genus k surface of self-intersection —2n. Since
X4 (n) can be viewed as an n-fold unbranched cover of X, we have e(X,(n)) = n-e(X,),
o(X,(n)) = 1+ 7(X,), Xa(Xy(n)) = - xn(X,), and 3(Xy(n)) =n - 3(X,).

As in Section 2 of [18], we can also pull back the branched covering

Xy — (8g x 5g)#4CP? — ¥, x %,
via the map ¢, X ¢, : X X X — X, X Xy, and obtain a new symplectic 4-manifold

X, (n?), which is a (g 4 1)-fold branched cover of ¥, x ¥ and an n?-fold unbranched
cover of X,. The composition

XQ(W,Q) — Zk X Zk & Zk,

gives a new Lefschetz fibration whose regular fiber has genus 1 + %n(g +1)(3g —2). This
fibration has a section whose image is a genus k surface of self-intersection —2n. We
have e(Xy(n?)) = n” - e(X,), 0(Xy(n%)) = n® - o(X,), xn(Xy(n?)) = n* - x(X,), and
Cz(Xg(n2)) =n? - (Xy).

For the applications in Sections 4 and 5, we will only need the symplectic 4-manifold
X5. The other symplectic 4-manifolds that were constructed in this section are used in
the sequel [2] to construct simply connected symplectic 4-manifolds with signature o > 5.

3. Second family with positive signature

Let g be a positive integer. As in Exercise IV.5.6 of [11], we can think of the genus ¢
surface X, as a 4g-gon with diametrically opposite edges identified so that the word given
by the boundary of the 4g-gon is

ajas -+ asgay tayt az_gl.
Divide this 4g-gon into two (2¢ + 1)-gons by cutting along a diagonal d such that the
boundaries of the resulting two (2g + 1)-gons give the words

a1as - - -azgd and aflagl---a;gld_l.

Viewing each (2g + 1)-gon as a regular polygon, we can rotate each (2¢g + 1)-gon by

angle 2311, and then reglue them to obtain an orientation-preserving self-diffeomorphism
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0 : My — X, of order 2¢g 4+ 1 with 3 fixed points. For 1 < i < 2g + 1, let A; be
graph(d’) C ¥, x X,. As in Section 2, [A;]? =2 —2¢g for 1 <i < 2g+ 1, and each A, is
a symplectic submanifold of ¥, x ¥/, which is equipped with a product symplectic form
priw + prjw. Note that Aq,...,Agyy; intersect in 3 points. If we blow up at these 3
points, the homology class of the proper transform D of the union A; U--- U Aggyq will
be divisible by 2g + 1. Let Z, be the (2g + 1)-fold branched cover of (X, x ¥,)#3CP?2
branched along the proper transform D. We compute that

e(Zg) = (29 =+ l)e((Zg X Zg)#3@2) - 29(29 + 1)6(257)
= (29 +1)(8¢* — 12+ 7),

E(Z,) = (29 +1) (c (S, x £,)#3CP) — —29 [D])2
1179 ! 29 +1
= (2g+1)(4g —4g+1),
A(Z,) —2e(Z 1
o(Zy) = w = 3(29 +1)(4g° + 49 - 9),
e(Z,)+o(Z 1
Xn(Z,) = w =529+ 1)(7g* — 8g + 3).
‘We conclude that
C%(Zg) _ 60

im = — = 8.571428571.
g—0 Xh(Zg) 7

Table 2 lists the characteristic numbers of Z; when 1 < g < 10.

TABLE 2

e(Zy) 9 | 75 | 301 | 783 | 1617 | 2899 | 4725 | 7191 | 10393 | 14427
o(Zg) | —1| 25 | 91 | 213 | 407 | 689 | 1075 | 1581 | 2223 | 3017
Xn(Zg) | 2 | 25 | 98 | 249 | 506 | 897 | 1450 | 2193 | 3154 | 4361
c3(Zy) | 15 | 225 | 875 | 2205 | 4455 | 7865 | 12675 | 19125 | 27455 | 37905

When g = 2, we obtain the 4-manifold H(1) on the BMY line in [17]. The g = 1 case
is also interesting in terms of the geography of small 4-manifolds. It is obtained from
(T? x T?)#3CP? by taking a 3-fold branched cover.

As in Section 2, there is a Lefschetz fibration

Zy — (84 x D) #3CP? — %, x B, 25 5. (2)
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A regular fiber of this fibration is a (2¢g 4 1)-fold cover of 3, branched over 2g + 1 points.
Hence a regular fiber is a surface of genus 4¢g?. The proper transform of each graph A;
gives rise to a section of (2) whose image is a genus g surface of self-intersection —1.

By pulling back (2) via the unbranched covering ¢, : £, — X, as in Section 2, we
obtain a new Lefschetz fibration Z,(n) — Xj, where k = n(g — 1) + 1. A regular fiber
is a genus 4¢? surface and there is a genus k section of self-intersection —n. We have
e(Z,(n) = n - e(Z,), 0(Z,(n) = n- 0(Zy), Xu(Zy(n) = 1 xn(Z,), and G3(Z,(n)) =
n-ci(Zy). ~

As in Section 2, we can also construct a family of symplectic 4-manifolds Z,(n?)
satisfying e(Z,(n?)) = n? - e(Z,), 0(Z,(n?)) = n? - 0(Z,), xn(Zy(n?)) = n? - xn(Z,),
and ¢}(Z,(n?)) = n?- ¢}(Z,). There exists a Lefschetz fibration Z,(n?) — X whose
regular fiber has genus 1+ n(4g% —1). This fibration has a section whose image is a genus
k surface of self-intersection —n.

The symplectic 4-manifolds Z,(n) and Z,(n?) will be useful in the sequel [2] when we
construct simply connected symplectic 4-manifolds with signature o > 5.

4. Simply connected building blocks

The goal of this section is to prove that there exist exotic irreducible smooth structures
on 47CP2#45CP? and 51CP2#47CP2.

Theorem 4.1. There exists a closed simply connected minimal symplectic 4-manifold M
such that e(M) = 94 and o(M) = 2. Moreover, M contains a symplectic torus T with
self-intersection 0 satisfying m (M \T) = 1.

Proof. Our 4-manifold M will be a symplectic sum (cf. [7]) of two symplectic 4-manifolds
along genus 9 surfaces of self-intersection 0. Let X5 be the symplectic 4-manifold that we
constructed in Section 2. Recall that X5 is the total space of a genus 7 Lefschetz fibration
over a genus 2 surface. Also recall that this Lefschetz fibration has a section whose image
has self-intersection —2 in X5. Thus we may take a regular fiber and a section and then
symplectically resolve their intersection to obtain a genus 9 symplectic surface ¥ C Xo
with self-intersection 0.

Next let Y7(1) be the minimal symplectic 4-manifold constructed in Section 2 of [3].
Recall from [3] that Y7(1) has the same cohomology ring as the connected sum 11(5? x $?)
and that Y7(1) is obtained from Y5 x ¥7 by performing 18 Luttinger surgeries. As observed
in [3], the geometrically dual symplectic surfaces X5 x {pt} and {pt'} x X7 in ¥y x Xy
descend to geometrically dual symplectic surfaces in Y7(1). If we symplectically resolve
the intersection between these two surfaces, then we obtain a genus 9 symplectic surface
of self-intersection 2 in Y7(1). Symplectically blowing up twice, we obtain a genus 9
symplectic surface Yy of self-intersection 0 in Y7(1)#2CP2.

Now let M be the symplectic sum Xg#%:gg(Y7(1)#2@2). We compute that

e(M) = e(Xa) + e(Y7(1)#2CP?) — 2¢(2g) = 36 + 26 — 2(—16) = 94,
o(M) = o(Xz2) 4+ o(Y7(1)#2CP?) =4 -2 = 2.
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Since X3 is a relatively minimal Lefschetz fibration over a surface of positive genus, X5 is
minimal by Theorem 1.4 in [19]. Also note that the pair (Y7(1)#2CP2,3Y) is a relatively
minimal pair by Corollary 3 in [10]. It now follows from Usher’s theorem in [20] that the
symplectic sum M is minimal.

To prove m (M) = 1, we proceed as follows. First the long exact homotopy sequence of
a fibration (cf. Proposition 8.1.9 in [8]) implies that the inclusion induced homomorphism
m1(2§) — m(X2) is surjective. Since the exceptional sphere of a blow-up intersects 3§
once transversally, any meridian of Xf is nullhomotopic in the complement of a tubular
neighborhood vX§. Hence we conclude that

™1 ((Y7(1>#2@2) \ 1/2/9/) =T (Y7(1)#2@2) =T (Y7(1))
Next we choose standard presentations

m1(82 X {pt}) = (a1,b1,a2,bs | [a1,b1][az, ba] = 1),

7
7T1({pt/} X 27) = <Cl,d1,...,C7,d7 | H[Cj’dj] = 1>
j=1

From [3], we know that the inclusion induced homomorphism

m1 (B2 x {pt}) U ({pt'} x X7)) — m1(¥7(1)) 3)
is also surjective. Moreover, we also know that 71(Y7(1))/{«) = 1, where « is the image
of any one of the generators ¢y, dy, ¢a, da of w1 ({pt’'} x X7) under homomorphism (3).

Let (25)1 and (24)!I denote parallel copies of ¥j and ¥J in the boundaries 9(vX})
and 0(vXy), respectively. When forming the symplectic sum M, we choose the gluing
diffeomorphism such that «, viewed as an element of 7 ((X4)!l), is mapped to an element
of 71((h)) that is represented by a non-separating vanishing cycle in the fiber of the
Lefschetz fibration Xo — 3g. Thus @ = 1 in w1 (M), which then implies that the inclusion
induced homomorphism

71 ((Y7(1)#2CP?) \ v2y) — mi (M) (4)

is trivial. Note that the inclusion induced homomorphism 1 ((34)!) — (M) is also
trivial since it can be factored through homomorphism (4) after (X§)! is identified with
(2. The meridians of ¥ are also trivial in 7 (M) because they are identified with the
meridians of 3¢, which are trivial. It follows that the inclusion induced homomorphism
w1 (X2 \v3§) — (M) is trivial as well, and by Seifert-Van Kampen theorem, we conclude
that ’/Tl(M) =1.

Finally, note that Y7(1) contains 10 pairs of geometrically dual Lagrangian tori. The
images of these 20 tori in the blow-up Y7(1)#2CP? are disjoint from %j, and thus they
lie in M. Let T denote one of these 20 Lagrangian tori. By perturbing the symplectic
form on M, we can turn T into a symplectic submanifold of M.

To show m (M \ T) = 1, it will be convenient to fix T, say T = a} x ¢4. Here, o} and
¢4 are parallel copies of a; and c3 as defined in [5]. Then w1 (M \T) is normally generated
by meridians of T, which are all conjugate to the commutator [b;!,ds]. Note that the
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generators by and dg are still trivial in 71 (M \ T') since the Luttinger surgery relations in
Section 2 of [3] still hold true in 71 (M \ T). It follows that meridians of T" are trivial and
hence my (M \T) = 1. O

Theorem 4.2. There exists a closed simply connected minimal symplectic 4-manifold N

such that e(N) = 100 and o(N) = 4. Moreover, N contains a symplectic torus T" with
self-intersection 0 satisfying m (N \T) = 1.

Proof. Let Yg(1) be the minimal symplectic 4-manifold constructed in Section 2 of [3].
Yy(1) has the same cohomology ring as the connected sum 15(S? x S?), and Yo(1) is
obtained from ¥y x X9 by performing 22 Luttinger surgeries. The symplectic submanifold
{pt'} x g C 3a x Xg descends to a symplectic submanifold of self-intersection 0 in Yy (1),
which we will denote by Xg.

Let ¥§ C X3 be the genus 9 symplectic submanifold of self-intersection 0 in the proof
of Theorem 4.1. Let N be the symplectic sum Xa#y5; —5,Yo(1). Usher’s theorem (cf. [20])
again implies that N is minimal. We compute that

e(N) = e(Xs) + e(Yo(1)) — 2e(Xg) = 36 + 32 — 2(—16) = 100,
o(N) = 0(Xy) + 0(Yo(1)) =440 = 4.

To prove m(N) = 1, first choose a standard presentation
9
71—1(29) = <Clad17 oo 7697d9 | H[C]ad]] = 1>
j=1

From [3], we know that 7;(Yy(1))/(a) = 1, where « is the image of any one of the four
generators ¢y, di, ¢a, do of m1(2g) under the homomorphism 71 (2g) — m1(Yy(1)) induced
by inclusion. We also know that a meridian of g is conjugate to the image of [ay, b1][aa, bs]
in m1(Yo(1) \ v¥g), where a;, b; (i = 1,2) are the standard generators of m1 (32 x {pt}).
Since o = 1 implies a; = b; =1 (i = 1,2), we deduce that w1 (Yy(1) \ vX9) /() = 1.

When forming the symplectic sum N, we choose the gluing diffeomorphism such that «,
viewed as an element of m (Eg), is mapped to an element of 7 ((¥4)!) that is represented
by a non-separating vanishing cycle in the fiber of the Lefschetz fibration Xy — 5. Thus
a =1 1in 7 (N), which then implies that the inclusion induced homomorphism

w1 (Yo(1) \ vXg) — m(N) (5)

is trivial. Note that the inclusion induced homomorphism 71 ((£4)Il) — 71 (N) is also
trivial since it can be factored through homomorphism (5) after (X4)! is identified with
Eg. The meridians of X are also trivial in 71 (N) because they are identified with the
meridians of Y9, which are trivial. It follows that the inclusion induced homomorphism
m1(X2\vE§) — m1(N) is trivial as well, and by Seifert-Van Kampen theorem, we conclude
that 7T1(N) =1.

Finally, note that Yo(1) contains 14 pairs of geometrically dual Lagrangian tori that
are all disjoint from Xg. Let T denote one of these 28 Lagrangian tori, say ay x .
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By perturbing the symplectic form on N, we can turn T into a symplectic submanifold
of N. We can deduce that 71 (N \ T') = 1 in exactly the same way as in the proof of
Theorem 4.1. ]

By Rohlin’s theorem (cf. [16]), M and N must have odd intersection form since
their signatures are not divisible by 16. Hence by Freedman’s classification theorem for
simply connected topological 4-manifolds (cf. [6]), M and N must be homeomorphic to
4TCP2#45CP? and 51CP2#47CP?, respectively.

Remark 4.3. Note that a simply connected minimal symplectic 4-manifold is always
irreducible (cf. [9]). By replacing ¥7(1) in the construction of M with Y7(m) for posi-
tive integers m > 2 (cf. [3]), we obtain an infinite family of pairwise non-diffeomorphic
irreducible non-symplectic 4-manifolds that are homeomorphic to 47CP2#45CP?.
Similarly, replacing Y9(1) in the construction of N with Yy(m) gives an infinite fam-
ily of pairwise non-diffeomorphic irreducible non-symplectic 4-manifolds homeomorphic
to 51CP2#47CP2.

5. Nonspin 4-manifolds with nonnegative signature

In this section, we use the two simply connected symplectic 4-manifolds constructed in
Section 4 to build infinite families of other examples. For convenience we introduce the
following definition.

Definition 5.1. Let X be a smooth 4-manifold. We say that X has oco-property if there
exist an irreducible symplectic 4-manifold and infinitely many pairwise non-diffeomorphic
irreducible non-symplectic 4-manifolds, all of which are homeomorphic to X.

Remark 4.3 says that 47CP?#45CP? and 51CP?#47CP? both have co-property. Recall
from [1] that mCP?#mCP? has oo-property for m odd and m > 91. We also recall
Theorem 2 in [3] which is restated below.

Theorem 5.2 (cf. [3]). Let X be a closed symplectic 4-manifold and suppose that X con-
tains a symplectic torus T of self-intersection 0 such that the homomorphism
m(T) — 7 (X) induced by the inclusion is trivial. Then for any pair (x,c) of non-
negative integers satisfying
0<c¢<8x—1, (6)
there exists a symplectic 4-manifold Y with m (Y) = m (X)),
oY) =xn(X)+x and E(Y)=c(X)+ec

Moreover, Y has an odd indefinite intersection form, and if X is minimal then Y is
minimal as well. |

A brief synopsis of the proof of Theorem 5.2 is as follows. For each pair of nonnegative
integers (,c) satisfying (6), [1] and [3] explicitly construct an odd minimal symplectic
4-manifold W with x,(W) = x, (W) = ¢, and a symplectic torus T/ C W of self-
intersection 0. Our Y is then the symplectic sum X#p_pW.
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If we strengthen the hypothesis of Theorem 5.2 a bit, then we can add the line ¢ = 8
to wedge-like region (6).

Theorem 5.3. Let X be a closed symplectic 4-manifold that contains a symplectic torus
T of self-intersection 0. Let vT be a tubular neighborhood of T and d(vT) its boundary.
Suppose that the homomorphism m (0(vT)) — w1 (X \ vT) induced by the inclusion is
trivial. Then for any pair of integers (x,c) satisfying

x=>1 and 0<c< 8y, (7)
there exists a symplectic 4-manifold Y with m (V) = m (X)),
oY) =xn(X)+x and A(Y)=c(X)+ec

Moreover, if X is minimal then Y is minimal as well. If ¢ < 8x, or if ¢ =8y and X
has an odd intersection form, then the corresponding Y has an odd indefinite intersection
form.

Proof. In light of Theorem 5.2, it only remains to check the case when ¢ = 8y and x > 1.
For each integer x > 1, it will be enough to exhibit a closed symplectic 4-manifold W
having the following properties.
(i) xn(W) = x and }(W) = 8x.
(ii) W contains a symplectic torus T of self-intersection 0 such that the complement
W\ T" does not contain any symplectic sphere of self-intersection —1.
(i) m (W \ vT")/K = 1, where K is the normal subgroup of 71 (W \ vT”) that is
generated by the image of the homomorphism 71 (9(vT")) — 71 (W \vT") induced
by the inclusion.

The desired 4-manifold Y is then the symplectic sum X#,_pW. An easy application
of Seifert-Van Kampen theorem gives us m1(Y) = 71 (X \ vT) = m1(X). The minimality
of Y follows from the minimality of X by Usher’s theorem in [20]. Other properties of YV’
can also be immediately verified.

Now we proceed to the construction of W. Given a positive integer x, consider the
closed minimal symplectic 4-manifold Y, 41(1) that was constructed in Section 2 of [3].
Recall that Y,41(1) is obtained from the cartesian product ¥ x X,41 by performing
2x + 6 Luttinger surgeries. If we choose not to perform one of these 2y + 6 Luttinger
surgeries, i.e. we only perform 2x 45 Luttinger surgeries on 39 x ¥, 41, then the resulting
symplectic 4-manifold W is still minimal and satisfies

Xn(W) = xn(Yy1(1) = x and (W) = i (Vi1 (1)) = 8x.

For concreteness, suppose that we do not perform (a} x ¢,a},—1) Luttinger surgery in
[3]. This means that the Luttinger surgery relation a; = [b;*,d; "] no longer holds in
m(W). We let T = a} x ¢|. By perturbing the symplectic form on W, we can turn
the Lagrangian torus a} x ¢} into a symplectic submanifold. Inside the quotient group
m (W \ vT")/K, the images of the generators a; and ¢; are trivial. Combined with the
remaining Luttinger relations from [3], which continue to hold in 7y (W \ vT")/K, this

10
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implies that the images of all other generators of 71 (W \ vT") are trivial in the quotient
group. ([l

The following corollary gives infinitely many irreducible smooth structures on a large
class of simply connected nonspin 4-manifolds with signature o = 0, 1, 2.

Corollary 5.4. Let m be an odd positive integer. If m > 49, then m(C]Pﬁﬁm@2
and mCP?#(m — 1)CP? have oo-property. If m > 47, then mCP?#(m — 2)CP? has
0o-property.

Proof. From Remark 4.3, we already know that 47CP2#45CP? has oo-property. We apply
Theorem 5.3 to the symplectic 4-manifold M in Theorem 4.1. Since x,(M) = 24 and
c2(M) = 194, we obtain a simply connected minimal symplectic 4-manifold Y satisfying
xu(Y) = x + 24 and ¢}(Y) = ¢ + 194. By Freedman’s theorem (cf. [6]), such Y is

homeomorphic to (2x + 47)CP2#(10x — ¢ + 45)CP2. By setting
c=8yx—s, where s¢€{0,1,2},

in (7), we obtain a simply connected minimal symplectic 4-manifold Y that is homeomor-
phic to

(2x + 47)CP?#(2x + 45 + s)CP?

for each integer x > 1. Simply connected minimal symplectic 4-manifolds are also ir-
reducible ([9]). By performing surgeries along a nullhomologous torus in Y as in [5]
(cf. Remark 4.3), we obtain infinite families of pairwise non-diffeomorphic irreducible
non-symplectic 4-manifolds homeomorphic to (2x + 47)CP?#(2y + 45 + s)CP2. O

The next corollary gives infinitely many irreducible smooth structures on a large class
of simply connected nonspin 4-manifolds with signature o = 3, 4.

Corollary 5.5. Let m be an odd positive integer. If m > 53, then mCP2#(m — 3)CP?
has oo-property. If m > 51, then mCP?#(m — 4)CP? has oo-property.

Proof. From Remark 4.3, we already know that 51CP2#47CP? has oco-property. We now
apply Theorem 5.3 to the symplectic 4-manifold N in Theorem 4.2. Since x5, (V) = 26 and
c2(N) = 212, we obtain a simply connected minimal symplectic 4-manifold Y satisfying
xn(Y) = x +26 and ¢3(Y) = ¢+ 212. By Freedman’s theorem, such Y is homeomorphic

to (2x + 51)CP?#(10x — ¢ + 47)CP2. By setting
c¢=8x —s, where s€{0,1}, (8)

in (7), we obtain a simply connected minimal symplectic 4-manifold Y that is homeomor-
phic to

(2x + 51)CP?#(2x + 47 + s)CP?
for each integer x > 1. The rest of the proof goes exactly the same way as the proof of
Corollary 5.4. O
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Remark 5.6. In the proof of Corollary 5.5, if we take s € {2,3,4} in (8) instead, we
obtain infinitely many irreducible smooth structures on
mCP*#(m — 2)CP?, mCP?#(m — 1)CP? or mCP*#mCP?,

respectively, for each odd integer m > 53. At this moment, the authors do not know
whether these exotic 4-manifolds are diffeomorphic to the corresponding 4-manifolds that
were constructed in the proof of Corollary 5.4.
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